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On lower bounded orbits of the times q-map

Jonas Lindstrøm Jensen∗

Abstract

In this paper we consider the times-q map on the unit interval as a subshift
of finite type by identifying each number with its base q expansion, and we
study certain non-dense orbits of this system where no element of the orbit is
smaller than some fixed parameter c.

The Hausdorff dimension of these orbits can be calculated using the spec-
tral radius of the transition matrix of the corresponding subshift, and using
simple methods based on Euclidean division in the integers, we completely
characterize the characteristic polynomials of these matrices as well as give
the value of the spectral radius for certain values of c. It is known through
work of Urbanski and Nilsson that the Hausdorff dimension of the orbits men-
tioned above as a map of c is continuous and constant almost everywhere, and
as a new result we give some asymptotic results on how this map behaves as
q →∞.

1 Introduction

In this paper we study the set

F q
c = {x ∈ [0, 1) | qnx ≥ c for all n ≥ 0}

where q ≥ 2 is an integer. This set is related to badly approximable numbers in
diophantine approximation, and has been studied by Nilsson [2], who studied the
Hausdorff dimension of the set as a map of c, and in more generality by Urbanski
[4] who considered the orbit of an expanding map on the circle.

As Nilsson did we will consider F q
c as a subshift of finite type which enables us

to see it as a problem in dynamical systems. When studied as a subshift of finite
type we can find the dimension of F q

c using the spectral radius of the corresponding
transition matrix, and this motivates the theorem of this paper which characterizes
the characteristic polynomial of this matrix.

The author would like to his PhD supervisor Simon Kristensen and he would
also like to thank Johan Nilsson for reading and commenting on this paper.

∗Email: jonas@imf.au.dk
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2 Basic definitions

We fix an integer q ≥ 2 and begin with the definition of part and residue which
comes from elementary integer division with residue.

Proposition 1. For integers n ∈ N and m ≥ 0 there are unique integers 〈n,m〉 ∈ N
(part) and 0 ≤ [n,m] < qm (residue) such that

n = qm〈n,m〉+ [n,m].

We note that if we write n = nk · · ·n1 in base q it is easy to find the part and
the residue, since [n,m] = nm · · ·n1 and 〈n,m〉 = nk · · ·nm+1.

The matrix defined below will be of great importance in this paper, since it and
its submatrices turns out to be the transition matrices of the dynamical systems we
consider.

Definition 2. For m ≥ 1 we define a 0-1 matrix Am of size qm × qm by

(Am)ij = 1 ⇐⇒ [i− 1,m− 1] = 〈j − 1, 1〉.

We let Am(P ) with P ⊆ {1, 2, . . . , qm} be the #P ×#P matrix made from picking
only the rows and columns from Am corresponding to the elements in P and for
0 ≤ k ≤ m we let Am(k) be the m− k ×m− k matrix where we have removed the
first k rows and columns from Am.

We will often omit the dependency on m when it is not confusing. Considering
i− 1 and j − 1 in base q we see that (Am)ij = 1 if and only if the first m− 1 digits
of j − 1 are equal to the last m − 1 digits of i − 1. So when c = i

qm
we see that

the base qm expansions of the numbers in F q
c can be seen as a subshift of finite type

with transition matrix Am(i)m. The metric of the subshift and the unit interval are
equivalent so the dimensional properties are the same. In particular, finding the
Hausdorff dimension of F q

c now boils down to finding the spectral radius ρ(Am(k)),
since

dimH F (c) =
ρ(Am(i)m)

log qm
=
ρ(Am(i))

log q
. (1)

The second equality is simple arithmetic, and for a proof of the first see [3]. This
is the main reason we were interested in finding the characteristic polynomials of
Am(i). The main theorem of this paper is a complete characterization of these
polynomials, and to formulate this theorem we need the following definition.

Definition 3. For n,m ≥ 1 with 0 ≤ n < qm we define

lm(n) = min{1 ≤ j ≤ m | 〈n, j〉 ≥ [n,m− j]}.

Using this definition we let

nm = n− [n,m− lm(n)] = qm−lm(n)〈n,m− lm(n)〉

be the minimal prefix of n.
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This is well defined since [n, 0] = 〈n,m〉 = 0 for any n with 0 ≤ n < qm. The
notion of minimal prefix is taken from Nilsson [2], but is here defined somewhat
different since we only consider finite sequences.

Let us consider some examples.

Example 4. Let q = 3,m = 3. Then

〈11, 1〉 = 3 ≥ 2 = [11, 2]

so l3(11) = 1 and
113 = 11− [11, 2] = 9.

If we let n = 7 we have
〈7, 1〉 = 2 < 7 = [7, 2]

and
〈7, 2〉 = 0 < 1 = [7, 1]

but
〈7, 3〉 = 0 = [7, 0]

so l3(7) = 3 and 73 = 7.

We are now ready to state the main theorem.

Theorem 5. Let 0 < i < qm and let fm
i (x) be the characteristic polynomial of

Am(i). Then
fm
i (x) = gmi (x)xq

m−m−i

where
gmi (x) = xm − a1xm−1 − · · · − am

and a1a2 . . . am is the base q expansion of qm − im.

Notice that this implies the nice equality

gmi (q) = im.

3 Proof outline

First recall that we can find the characteristic polynomial f(x) = xq
m−i− a1xqm−i−1

− · · · − aqm−i of Am(i) as

ak = (−1)k
∑

#P=k, minP>i

detAm(P ), (2)

or as

ak =
1

k

(
traceAm(i)k + a1 traceAm(i)k−1 + · · ·+ ak−1 traceAm(i)

)
. (3)

The first formula is sometimes used as the definition of the characteristic polynomial,
and for a proof of the latter see [1]. We now try to outline the proof that essentially is
the construction of an algorithm that calculates both the characteristic polynomial
of Am(i) and im.
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• We prove that all the submatrices A(P ) that gives non-zero principal minors
are permutations, so when removing rows and columns from the first to the
last, we only change the characteristic polynomial when removing rows and
columns corresponding to the smallest element of a cycle.

• If lm(i) = m then i is the smallest element of an m-cycle and this is the only
permutation of size ≤ m that has i as an element. So removing i decreases
the m’th coefficient of the characteristic polynomial by 1 and leaves all the
preceding coefficients unchanged. On the other hand, if lm(i) = n < m, then
the nontrivial part of the characteristic polynomial, gmi (x), can be found as
xm−ngn〈i,m−n〉(x) since we have (3) and can prove that

traceAm(i)k = traceAn(〈i,m− n〉)k

for all k ≤ m.

• If lm(i) = m, then im = i+ 1m − 1, and if lm(i) = n < m then im =
qm−n〈i,m− n〉n, so we see that i and the characteristic polynomials follow
the same pattern.

• Since the theorem is true for m = 1, we can now use induction if lm(i) < m.
If not, we increase i until we have lm(i) < m, which happens at some point
since lm(qm − 1) = 1.

• The m + 1’st, m + 2’nd, . . . , qm’th coefficient of fm
i (x) are all zero, because

we have found the first M coefficients of the characteristic polynomial for any
M , so we pick K such that lM(K) = m and 〈K,M −m〉 = k, then we see that
gMK (x) has its m + 1’th, m + 2’th, . . . , M ’th coefficients equal to zero, which
will then also be true for gmk (x). This finishes the proof of the theorem.

4 Part and residue

The results in this sections explain some properties of the part and residue functions
and gives a characterization of the powers of A. We will use these results throughout
the paper, often without specifically stating so. The proofs in this section are rather
straightforward and may be skipped on a first read.

Proposition 6. 1. For j, k, n ≥ 0 we have [[n, j], k] = [n,min{j, k}] and
〈
〈n, k〉, j

〉
= 〈n, k + j〉.

2. For j > k we have
〈[n, j], k〉 = [〈n, k〉, j − k].

Proof. Let us first prove the two equalities in 1. Since [n, k] is the same as n (mod q)k

we have the first equality. Now assume that j+k ≤ m. Now 〈n, k〉 = qj
〈
〈n, k〉, j

〉
+

[〈n, k〉, j], so

n = qk〈n, k〉+ [n, k] = qk+j
〈
〈n, k〉, j

〉
+ qk[〈n, k〉, j] + [n, k],
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but since [〈n, k〉, j] < qj and [n, k] < qk we have

qk[〈n, k〉, j] + [n, k] ≤ qk(qj − 1) + qk − 1 = qk+j − 1 < qk+j,

and by the uniqueness of the residue and parts we see that 〈〈n, k〉, j〉 = 〈n, k + j〉.
Now consider 2., so let j > k. From 1. we have

〈n, k〉 = qj−k
〈
〈n, k〉, j − k

〉
+ [〈n, k〉, j − k] = qj−k〈n, j〉+ [〈n, k〉, j − k]

and
[n, j] = qk〈[n, j], k〉+

[
[n, j], k

]
= qk〈[n, j], k〉+ [n, k].

So

n = qk〈n, k〉+ [n, k]

= qj〈n, j〉+ qk[〈n, k〉, j − k]− qk〈[n, j], k〉+ [n, j]

= qj〈n, j〉+ [n, j] + qk([〈n, k〉, j − k]− 〈[n, j], k〉)

and since n = qj〈n, j〉+ [n, j] this implies that

[〈n, k〉, j − k] = 〈[n, j], k〉.

Lemma 7. Let 1 ≤ k ≤ m. Then Ak
ij = 1 if and only if

[i− 1,m− k] = 〈j − 1, k〉.

Proof. We will prove this by induction. For k = 1 it is the definition of A, so assume
that 1 < k ≤ m. We assume that the lemma is true for all smaller k. If Ak

ij = 1

there must exist some n with 0 ≤ n < qm and Anj = 1 and Ak−1
in = 1. Using the

induction hypothesis we get

[i− 1,m− k + 1] = 〈n− 1, k − 1〉 and [n− 1,m− 1] = 〈j − 1, 1〉 (4)

for this n. Now by part 2. of the above proposition we have

[〈n− 1, k − 1〉,m− k] = 〈[n− 1,m− 1], k − 1〉,

and using (4) we get

[
[i− 1,m− k + 1],m− k

]
=
〈
〈j − 1, 1〉, k − 1

〉
,

and using part 1. of the proposition we get

[i− 1,m− k] = 〈j − 1, k〉

as desired.
Now assume that [i− 1,m− k] = 〈j − 1, k〉. Let

n− 1 = qk−1[i− 1,m− k + 1] + [〈j − 1, 1〉, k − 1].
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This is a positive integer smaller than qm. By the uniqueness of the residue and
parts we see that

[i− 1,m− k + 1] = 〈n− 1, k − 1〉 (5)

and

[〈j − 1, 1〉, k − 1] = 〈n− 1, k − 1〉. (6)

From (5) and the induction hypothesis we see that Ak−1
in = 1. We now want to prove

that Anj = 1. Recall that we assume [i− 1,m− k] = 〈j − 1, k〉, so

〈[n− 1,m− 1], k − 1〉 = [〈n− 1, k − 1〉,m− k]

=
[
[i− 1,m− k + 1],m− k

]

= [i− 1,m− k]

= 〈j − 1, k〉.

Using this and (6) we see that

[n− 1,m− 1] = qk−1〈[n− 1,m− 1], k − 1〉+
[
[n− 1,m− 1], k − 1

]

= qk−1〈j − 1, k〉+ [n− 1, k − 1]

= qk−1〈j − 1, k〉+ [〈j − 1, 1〉, k − 1]

= qk−1
〈
〈j − 1, 1〉, k − 1

〉
+ [〈j − 1, 1〉, k − 1]

= 〈j − 1, 1〉.

This proves that Ak−1
in = 1 and Anj = 1 which implies that Ak

ij > 0. Now assume

that there is another n′ such that Ak−1
in′ = 1 and An′j = 1. Then

[i− 1,m− k + 1] = 〈n′ − 1, k − 1〉

and

[〈j − 1, 1〉, k − 1] = 〈n′ − 1, k − 1〉
so

n′ − 1 = qk−1〈n′ − 1, k − 1〉+ [n′ − 1, k − 1]

= qk−1[i− 1,m− k + 1] +
[
[n′ − 1,m− 1], k − 1

]

= qk−1[i− 1,m− k + 1] + [〈j − 1, 1〉, k − 1]

= n− 1,

which proves that there can be only one such n, so Ak
ij = 1.

Lemma 8. If a, b, k is such that [a, k] < [b, k] and 〈a, k〉 = 〈b, k〉, then

[a, k + j] < [b, k + j]

for all 0 ≤ j ≤ m− k.
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Proof. If 〈a, k〉 = 〈b, k〉 then

〈
〈a, k〉, j

〉
=
〈
〈b, k〉, j

〉
,

and hence
〈a, k + j〉 = 〈b, k + j〉.

Since a < b we thus have
[a, k + j] < [b, k + j]

as desired.

5 Minimality

We now prove the following rather simple lemma which states that the only non-zero
principal minors can be found as submatrices of A who are permutations.

Lemma 9. If detA(P ) 6= 0 then the corresponding matrix is a permutation matrix.

Proof. Assume that we choose P such that one of the rows of A(P ) has two ones.
In other words there are i, j1, j2 ∈ P such that

Aij1 = Aij2 = 1.

Using the definition of A this implies that

〈j1 − 1, 1〉 = [i− 1,m− 1] = 〈j2 − 1, 1〉.

Now let k ∈ P be arbitrary. Then Akj1 = 1 if and only if [k− 1,m− 1] = 〈j1− 1, 1〉,
which is true if and only if

[k − 1,m− 1] = 〈j2 − 1, 1〉,

so Akj1 = Akj2 for all k ∈ P , so the j1’th and j2’nd column are equal and so
detA(P ) = 0. The proof is similar when we assume that there are two ones in one
column.

Recall that if A(P ) is a permutation, then P = P1 ∪ · · · ∪ Pn where ∩iPi = ∅
and A(Pi)’s are all cycles. This motivates the following two theorems, where we
characterize the subsets P where A(P ) is a cycle. We are interested in the smallest
elements of cycles, since the whole cycle is removed when we remove this element,
which we will prove is exactly the numbers that are minimal.

Definition 10. We say that 0 ≤ n ≤ qm is m-minimal if

A
l(n)
n+1,n+1 = 1,

or equivalently using lemma 7 if

[n,m− l(n)] = 〈n, l(n)〉.

8



Theorem 11. Let P ⊂ {1, 2, . . . , qm} be such that A(P ) is a k-cycle for some
1 ≤ k ≤ m. Then minP − 1 is minimal with lm(minP − 1) = k.

Proof. Let P = {i1, i2, . . . , ik} be a k-cycle with Aj
i1ij+1

= 1 for 1 ≤ j < k and

Ak
i1i1

= 1. Without loss of generality we can assume that minP = i1. Using
lemma 7 we get that

[i1 − 1,m− j] = 〈ij+1 − 1, j〉,
for 1 ≤ j < k and

[i1 − 1,m− k] = 〈i1 − 1, k〉
so we need to prove that 〈ij+1 − 1, j〉 > 〈i1 − 1, j〉 for j = 1, 2, k − 1. We have the
non-strict inequality since i1 < ij. So assume for contradiction that

〈i1 − 1, j〉 = 〈ij+1 − 1, j〉.

Now since i1 < ij+1 we have

[i1 − 1, j] < [ij+1 − 1, j],

and due to lemma 8 we have

[i1 − 1,m− k + j] < [ij+1 − 1,m− k + j] (7)

since k ≤ m. Since Ak−j
ij+1i1

= 1 we have [ij+1 − 1,m− k + j] = 〈i1 − 1, k − j〉. Using
(7) we get

[i1 − 1,m− k + j] < 〈i1 − 1, k − j〉.
Now consider ik−j+1. Since j < k we have Ak−j

i1ik−j+1
= 1 so

[i1 − 1,m− k + j] = 〈ik−j+1 − 1, k − j〉,

and hence
〈ik−j+1 − 1, k − j〉 < 〈i1 − 1, k − j〉.

This implies that ik−j+1 < i1 which is a contradiction against i1 being the least
element in P .

Theorem 12. Assume that i−1 is minimal. Then there is a unique P ⊆ {1, 2, . . . , qm}
such that minP = i and A(P ) is a l(i− 1)-cycle.

Proof. We let P = {i, i2, i3, . . . , ik} where

i2 − 1 = q[i− 1,m− 1] + 〈i− 1,m− 1〉
i3 − 1 = q2[i− 1,m− 2] + 〈i− 1,m− 2〉

...

ik − 1 = qk−1[i− 1,m− k + 1] + 〈i− 1,m− k + 1〉.

We now need to prove that An−1
iin

= 1 and that i < in for all n = 2, 3, . . . , k. Using
the uniqueness of the part and residue we see that

〈in − 1, n− 1〉 = [i− 1,m− n+ 1]

9



and

[in − 1, n− 1] = 〈i− 1,m− n+ 1〉
for n = 2, 3, . . . , k. The first of these equations implies that An−1

iin
= 1.

Since lm(i− 1) = k we know that

〈i− 1, n〉 < [i− 1,m− n]

for n = 1, 2, . . . , k − 1. This implies that

in+1 − 1 = qn[i− 1,m− n] + 〈i− 1,m− n〉 > qn〈i− 1, n〉+ [i− 1, n] = i− 1

since both 〈i− 1,m− n〉 and [i− 1, n] are smaller than qn.
We now need to prove that this P is unique. Assume that we have P ′ =

{i, i′2, . . . , i′k}, where we order the elements such that An−1
ii′n

= 1. This implies that

[i− 1,m− n+ 1] = 〈i′n − 1, n− 1〉

for all n = 2, 3, . . . , k. SinceA(P ) is a k-cycle, we furthermore know thatAk−n+1
i′ni

= 1,
so

[i′n − 1,m− k + n− 1] = 〈i− 1, k − n+ 1〉.
Now we want to prove that i′n = in, so let 2 ≤ n ≤ k be given. We have

i′n − 1 = qn−1〈i′n − 1, n− 1〉+ [i′n − 1, n− 1]

and 〈i′n − 1, n− 1〉 = [i− 1,m− n+ 1], so we just need to prove that

[i′n − 1, n− 1] = 〈i− 1,m− n+ 1〉.

We have

[i′n − 1, n− 1] =
[
[i′n − 1,m− k + n− 1], n− 1

]

= [〈i− 1, k − n+ 1〉, n− 1]

=
[
[in − 1,m− k + n− 1], n− 1

]

= [in − 1, n− 1]

= 〈i− 1,m− n+ 1〉

so in = i′n for all n, and so P = P ′.

Corollary 13. If lm(i − 1) = m then there is exactly one P ⊆ {1, 2, . . . , qm} such
that minP = i and A(P ) is a m-cycle.

Proof. This follows from the fact that Am
ij = 1 for all i, j. In particular we have

Am
ii = 1 for all i.

Now compare this corollary with the following lemma.

Lemma 14. If lm(i− 1) = m, then im = i− 1m + 1.

10



Proof. It is enough to prove that i = i, since we certainly have i− 1 = i− 1. Using
the definition we see that this is equivalent with [i,m− l(i)] = 0. If l(i) = m we are
done, so assume that l(i) < m. Now either [i,m − l(i)] = 0, in which case we are
done, or [i,m− l(i)] = [i− 1,m− l(i)] + 1. Now since l(i− 1) = m we have

[i− 1,m− l(i)] < 〈i− 1, l(i)〉,

since l(i) < m = l(i− 1), but

[i− 1,m− l(i)] = [i,m− l(i)]− 1 ≤ 〈i, l(i)〉 − 1 ≤ 〈i− 1,m− l(i)〉,

which is a contradiction.

Recalling the idea of the proof we here see that if lm(i− 1) = m and we remove
the i’th row and column of Am, then we remove exactly one permutation of size
≤ m, namely a m-cycle, which increases the m’th coefficient of the characteristic
polynomial by one, and we also see that it increases the m’th digit of the base q
expansion of i by one.

6 Induction mapping

In the following chapter we will no longer suppress the dependency on m, since we
are interested in mapping permutations between matrices of different sizes while
preserving cycles. We will illustrate the idea with an example. If q = 3, and we
write all numbers in base 3 we see that

012, 120, 201 (8)

is a 3-cycle in A3(012). We now map this up to

0120, 1201, 2012

which is a 3-cycle in A4(0120). On the other hand we could also map (8) down to

01, 12, 20

which is a 3-permutation in A2(01). In this section we will formally define these
maps, and also prove that they map cycles to cycles. We begin with the ’down’ map
which is defined in the following way.

Definition 15. If 0 ≤ i < qm+1 then we define

Dm(i) = 〈i, 1〉.

For M > m and 0 ≤ i ≤ qM we let

Dm,M(i) = Dm ◦ · · · ◦DM−1(i) = 〈i,M −m〉.

We now prove the following lemma.

11



Lemma 16. If lM(i) = m < M we have

lm(Dm,M(i)) = m.

Proof. We have [i,M −m] ≥ 〈i,m〉 and [i,M − j] < 〈i, j〉 for all 1 ≤ j < m, and
we need to prove that [i,m − j] < 〈i, j〉 for all 1 ≤ j ≤ m. But this is clearly the
case since m < M , so

[i,m− j] < [i,M − j] < 〈i, j〉

for all 1 ≤ j < m.

Corollary 17. Let 0 ≤ i < qM . If lM(i) = m < M , then

iM = qM−mDm,M(i)m.

Proof. This follows from the definition of the minimal prefix.

We saw earlier that the characteristic polynomial of a matrix can be found by
considering the trace of the powers of the matrix. So if we can map permutations
bijectively between two transition matrices we must have the same characteristic
polynomials. As before we only need to consider cycles as all permutations are
products of cycles.

First we formally define what we mean by a cycle in a matrix.

Definition 18. An ordered k-tuple of distinct elements, (i1, . . . , ik) with 0 ≤ ij ≤ qm

for all j = 1, 2, . . . , k is a k-cycle in Am(c) if Am(c)ij ,ij+1
= 1 for all j = 1, 2, . . . , k−1,

and Am(c)ik,i1 = 1. In other words, if we have

[ij,m− 1] = 〈ij, 1〉

for j = 1, 2, . . . , k − 1 and [ik,m− 1] = 〈i1, 1〉 and ij ≥ c for all j = 1, 2, . . . , k.

We have a ‘down’ map, mapping from large matrices to smaller and we now
define an ’up’ map, mapping from smaller to larger.

Definition 19. Let P = (i1, . . . , ik) be a k-cycle in Am(c). Then we let

Um(P ) = (qi1 + [i2, 1], · · · , qik + [i1, 1]),

and for M > m we let Um,M = UM−1 ◦ UM−2 ◦ · · · ◦ Um.

Lemma 20. Let m = lM(c) and let P = (i1, i2, . . . , ik) be a k-cycle in AM(c). Then

Dm,M(P ) = (Dm,M(i1), · · · , Dm,M(ik))

is a k-cycle in Am(Dm,M(c)). Furthermore, if Q = (j1, . . . , jk) is a k-cycle in
Am(Dm,M(c)), then Um,M(Q) is a k-cycle in AM(c).

12



Proof. To prove that Dm,M(P ) is a k-cycle in Am(Dm,M(c)) can be done by straight-
forward calculations. We also get that Um,M(Q) is a k-cycle in AM(qM−m〈c,M−m〉)
rather straightforward. The problem is to prove that it actually is a k-cycle in AM(c),
or in other words that there are no k-cycles with its smallest element in the inter-
val between qM−m〈c,M − m〉 and c. Recalling the definition of cM and that the
least element of a cycle always is minimal we thus need to prove that if we have
cM ≤ n < c, then n cannot be minimal.

We get that nM = cM and lM(n) = lM(c) so

[c,M −m]− [n,M −m] = c− n

so if we assume that n is minimal we get

〈c,m〉 ≥ [c,M −m] = [n,M −m] + c− n = 〈n,m〉+ c− n

which is a contradiction. This finishes the proof of the theorem.

These two lemmas now lead to the following theorem regarding the invariance of
the traces.

Theorem 21. Let m, k ≤M . Then

traceAm(c)k = traceAM(qM−mc)k.

More generally we have

traceAm(〈c,M −m〉)k = traceAM(c)k

whenever lM(c) ≥ m.

Proof. Each k-cycle contributes to the trace, and since the maps used in the lemmas
maps all k-cycles injectively, we get the theorem.

Newton’s formula for the characteristic polynomial gives us, that if

fm
i (x) = xn − a1xn−1 − · · · − an = det(xI − Am(k))

is the characteristic polynomial of Am(i) where n = qm − k, then

ak =
1

k

(
traceAm(i)k − a1 traceAm(i)k−1 − · · · − at−1 traceAm(i)

)

so the above theorem gives us that

fM
i (x) = xM−mfm

qM−mi(x).

Combining this with the simple lemma below gives us the proof of the main theorem.

Lemma 22. Let 0 ≤ n < qm. Then

qnm = qnm+1.

13



Proof. We see that

qnm = q(n− [n,m− lm(n)]) = qn− [qn,m+ 1− lm(n)],

so we just need to prove that lm+1(qn) = lm(n). Assume that j = lm(n). Then

〈qn, j〉 ≥ q
〈
〈qn, j〉, 1

〉
= q〈qn, j + 1〉 = q〈n, j〉 ≥ q[n,m− j] = [qn,m].

Now assume that 〈qn, j〉 ≥ [qn,m+ 1− j] for some j > lm(n). Then

q[n, j] = [qn, j] ≤ 〈qn,m+ 1− j〉

so

[n, j] ≤ 〈〈qn,m+ 1− j〉, 1〉 = 〈n,m− j〉
which is a contradiction.

We are now ready to prove the main theorem, so let us restate it.

Theorem 23. Let 1 ≤ i ≤ qm and let fm
i (x) be the characteristic polynomial of

Am(i). Then

fm
i (x) = gmi (x)xq

m−m−i

where

gmi (x) = xm − a1xm−1 − · · · − am
and a1a2 . . . am is the base q expansion of qm − im.

Proof. We prove this theorem using induction. If m = 1 it is certainly true since
i1 = i for all 0 ≤ i < q and A1 is the all one matrix of size q × q.

We see that when choosing m and i > 0 we have two possibilities: Either we
have l(i − 1) = m or l(i − 1) < m. In the first case removing the i’th column
and row only removes one non-zero minor, namely the unique m-cycle with i as its
minimal element given in theorem 12. In this case we also have that the last digit
of i− 1m is [i − 1, 1] which must be non-zero, so here we just decrease am with 1,
so the first m coefficients of the characteristic polynomial changes in the right way
due to lemma 14.

If we have l(i−1) = n < m we see that we can find the characteristic polynomial
of the smaller matrix of size qn instead and multiply it by xm−n. As we see in
Corrolary 17 this is also the case for i. So by induction we are done.

Now we need to prove that the remaining coefficients are all zero. To prove this
we once again use lemma 21 to see that the M ’th coefficient of fm

i must be equal to
the M ’th coefficient of fM

qM−mi for any M > m. And here we see that the m+ 1’th,
m + 2’th, . . . , and M ’th coefficient all are zero, since the M ’th digit of the base q
expansion of

qM − qM−miM = qM−m(qm − im)

is zero. This finishes the proof of the theorem.
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7 Constant dimension

Now define φ : c 7→ dimH F (c). Recall from (1) that when c has finite base q
expansion we can calculate φ(c). Nilsson [2] proved that this function is continuous
and constant almost everywhere. Using the theorem we see that if we have 0 ≤ i <
j < qm such that im = jm then

φ

(
i

qm

)
= φ

(
j

qm

)

and since φ is a decreasing function it must be constant on the interval

[
i

qm
,
j

qm

]
.

Now let 0 ≤ i < q be given and let

j(m) =
m∑

n=1

iqn−1.

We now claim that

qm−1im = j(m)m.

To prove this we see that lm(qm−1i) = 1 and so qm−1im = qm−1i. Now lm(j(m)) = 1
and

j(m)m = iqm−1

which proves the claim. This gives us

φ

(
i

q

)
= φ

(
j(m)

qm

)

for all m and letting m→∞ we get that φ is constant on the interval

[
i

q
,

i

q − 1

]
.

Now letting m = 1 we find

g1i (x) = x− i1 = x− i

which has one root, x = i, so we get

φ

(
i

q

)
=

log i

log q

on this interval.
A bit more work allows us to calculate φ(x) for x = i

qn
for larger n since we here

need to solve polynomial equations of degree n.
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Figure 1: Numerical plots of φ for q ∈ {2, 3, 5, 7}.

8 Numerical plots

Calculating the spectral radii of Am(i), we can make numerical plots of the func-
tion φ. The plots in figure 1–3 was made using GNU Octave.

9 Asymptotics

We now want to consider φ as q → ∞. We consider the function ψ : [0, 1) → [0, 1)
where

ψ(c) =

{
1 + log(1−c)

log q
0 ≤ c < q−1

q

0 otherwise.

and wish to prove that φ and ψ are somewhat asymptotically similar. This can also
be expressed by saying that ρ(Ac) behaves somewhat like q−qc, which is true in the
starting point of the intervals where φ is constant, so we get the following theorem.

Theorem 24. For all c ∈ [0, 1) we have

φ(c)

ψ(c)
→ 1

as q →∞.

Proof. Let c ∈ [0, 1) be given. Then if we let i = bqcc we have

i

q
≤ c ≤ i+ 1

q
.
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Figure 2: Plots of φ and ψ when q = 7.

Now

φ

(
i

q

)
≥ φ(c) ≥ φ

(
i+ 1

q

)

and likewise for ψ since both functions are decreasing. Due to the result we got
earlier on constant intervals we have

log(q − i)
log q

≥ φ(c), ψ(c) ≥ log(q + 1− i)
log q

so recalling the definition of i we have

log(q − i)
log(q − i+ 1)

≥ φ(c)

ψ(c)
≥ log(q − i+ 1)

log(q − i)
and since i→∞ as q →∞, both the lower and upper bound converges to 1. This
finishes the proof.

Since we also see that ψ(c)→ 1 as q →∞, we also have the following corollary.

Corollary 25. For all c ∈ [0, 1) we have

φ(c)→ 1 as q →∞.

The convergence is very slow though – since φ and ψ are equal on q points we
can just look at the convergence of

log(1− c)
log q

to zero which is easy to calculate.
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Figure 3: Plot of φ when q = 50000.
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