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Spectral theory of the Laplacian on the modular

Jacobi group manifold

Erik Balslev

Department of Mathematical Sciences, Aarhus University

Abstract

The reduced modular Jacobi group is a semidirect product of SLa(Z) with
the lattice Z2. We develop the spectral theory of the invariant Laplacian L
on the associated group manifold. The operator L is decomposed by Fourier
analysis as a direct sum of operators Ly; corresponding to frequencies k related
to the lattice and [ to translations. L is the Selberg Laplacian for SLy(Z). For
k,l > 1, Ly has a purely discrete spectrum, while Ly has a purely continuous
spectrum for k > 1. The set of all eigenvalues of L satisfies a Weyl law. The
results are extended to subgroups of the modular Jacobi group of finite index.
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Introduction

The present paper deals with the Jacobi group I'; which is the semidirect product of
SLo(R) with the Heisenberg group, the group of upper triangular, idempotent 3 x 3
matrices (|1, [3]). Dividing out the center of the Heisenberg group and restricting
to integers, we obtain the reduced modular Jacobi group I7;. The group Ij; is
isomorphic to the semidirect product I} x Z? of the modular group I} with the
additive group Z% We study the spectral theory of the invariant Laplacian on the
group manifold I, and its subgroups of finite index.

In section 1 we develop the spectral theory of the I3 j-invariant Laplacian L. We

obtain a decomposition of L as a direct sum of operators Ly, k =0,1,2,..., where
. . . 2 2 .
Ly is the usual automorphic Laplacian 4 = —y?(Z; + %), while Lj for & > 1

is unitarily equivalent to the operator L) = A + 47r212—2 in L2(Fr_;dp). For k > 1,
separation of variables leads to a further decomposition of L? as a sum of ordinary
differential operators Ly = —y2j—y22 + 47?2(% +1?y?), 1 = 0,1,2,... The operator
Lyo has a purely continuous, simple spectrum without resonances. For [ > 1 the
spectrum of Ly consists of a sequence of simple eigenvalues A}, — oo as n — oo.
This provides a complete spectral decomposition of L, formulated in Theorem 1.

In section 2 we study the counting function N () for the eigenvalues of the
operator L. Based on a result of Titchmarsh [7] on the asymptotics of the counting
function for ordinary differential operators we obtain the asymptotics of N(A) by
summing the counting functions Ny (\) of Ly over k and I. We obtain the Weyl law
for the operator L, expressed in Theorem 2.

In section 3 we extend these results to normal subgroups I' of I3 of finite index I.
We obtain a decomposition of Ly, as a direct sum of operators L., k =0,1,2,...,
where L is the I'-automorphic Laplacian and for each £ > 1 the operator Ly, splits

into a sum of I/f3 operators L&, , where (3 is the width of I" and L%, is unitarily

equivalent to the operator LY, in L*(Iw;dp). Thus, the spectrum of Ly, depends
both on I and 3. For k > 1 the eigenvalues of L, are the eigenvalues of the ordinary
differential operators Eﬁkl = —yQ% + 47r2(% + 6‘2l2y2), [ =1,2,... From this we
obtain the asymptotic counting function IN(A), which proves the Weyl law for Ly, .
The continuous spectrum of L., has multiplicity I/ for each k = 0,1,2,... The
results are formulated in Theorem 3.

In section 4 we study the perturbation of I'(2); by characters y («) defined by a
holomorphic modular form of weight 2 (Eisenstein series). For each £ =0,1,2,...,
two cusps are closed, and the multiplicity of the continuous spectrum is reduced
from 3 to 1 for v # 0. Eigenvalues A}, of Lr, continue smoothly as eigenvalues
Ay(a) of L9 s(a) for a # 0. Moreover, in the two closed susps new sequences of
eigenvalues A}, («) appear, converging to i as & — 0 and replacing the continuous
spectrum. The Weyl law remains valid for all a. The results are given in Theorem 4.

In section 5 we consider a few important examples of non-normal subgroups
I' of I;. We establish in Theorem 5.1 the spectral decomposition of Lp, and in
particular the Weyl law for the three conjugate groups I'y(2), ['°(2), I[y(2) of index 3
in the modular group. In Theorem 5.2 we obtain the corresponding results for the
conjugate groups I'g(4), T°(4), Ty(4) of index 6 in I. It is interesting here that
[o(4) is not isospectral to I'(2) ;. The groups I'(2) and I'y(4) are conjugate through



I'(2) = 2['0(4)4, but this is not a conjugaton of I'(2); and I'y(4),. In Theorem 5.3
we consider two conjugate groups of index 6 generated by 3 elliptic elements of
order 3 [5]. These groups also have width 6 and their Jacobi groups are therefore
for k > 1 isospectral to the normal subgroup I7.

1 Spectral theory of the I j-invariant Laplacian

We denote by I ; the reduced Jacobi group I x Z? with the elements (g,¢), g € T},
c=(}) € Z* and
(g1 ¢1) X (g2, ¢2) = (9192, 91 'ea + 1)

for g1,9o € T} and ¢y, ¢y € Z2.

The 4-dimensional reduced Jacobi manifold M; has coordinates (z,w) with z €
h={x+iy|z €Ry>0} w= (Y R

The action of T} ; on M} is given by

(g,¢)(z,w) = (&', w'), 9= Nen, c=() ez

where

, (az + 4
z =
vz + 0
In the group I} ; we identify ((3 f), (3)) with ((:f: :g), (Z3))- So all I}-invariant
functions on M satisty f(z,u,v) = f(z, —u, —v).
The fundamental domain of I'; can be chosen as

), w =g M"w+c

Fr, = Fy x{(u,0)] =3 <u<i, —u<v< i)
We define T}, f for functions f on h x R? by
(T f) (z,w) = £((g,0)(z,w)).
For g € I} and f a function on h we set
(T,f)(2) = f(g2).
For f a function on h x R? we set
(Tyf) (z,w) = (Tyof ) (z,w) = f((g,0)(z,w)).
For k € N\ {0}, m € Z we define e,,, (u,v) by
amiku 2mimy | ~2miku,—2mimy

erm (U, v) = e e

The I} j-invariant Laplacian L on M} is given [2] by

o* 0 1[0 o 0?
L=+ ) -212 9 2 1) 1.1
Y (8x2+8y2) y{8u2 x8u8v+<x Ty >8v2} (11)
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L is a self-adjoint operator in Hr, = L*(Fy,).
Let ’

L[ % Y 2
A:—y @—Fa—yQ IDHH:L<FH,d,u>

Lemma 1.1. Let f be a T} ;-invariant, continuous function of z,w, C' in u,v for

fized z. Then
201) = 2 01

where the functions fym(z) are related by

fg,l( k ) (Z) = (Tgfkm) (Z)

m

Proof. Since f is Ij-invariant, it is for fixed z Z2-invariant, so

() = 3 o)

and the series is absolutely and uniformly convergent for u,v € R.
For g € I} we have

T,

. . . / . / > — y f—
(627rzku627rzmv) _ €2mku 627rzkv _ 627rzk(5u 7v)627rzm( Bu+av)

70 1
— 627rzk u€27mmv7 k'/ — ké—m@ m/ — _kfy_i_ma

; ()= (52 () =0 ()

From (1.3) and (1.4) we obtain for g € I

(fgf) (z7 u, U) = Z (Tgfkm) (Z)ek’m’<u7 U)'

k,m

The invariance of f under fg means by (1.3) and (1.5)

Z (Ty from) (2)€xrmn kam 2)epm (U, v).

k,m

Since (%) — (%)) = ¢g71(¥) is a bijection of Z? the r.h.s. of (1.6) equals

m m
Z St (2) € (w5 0)

and it follows from (1.6) and (1.7) that for all g € I3, (:1) € 7*

fom (2) = (Ty fim(2)), () =971 (%).

The Lemma is proved.

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)



To further analyze the series (1.1) representing the invariant function f(z,u,v) we
determine the equivalence classes in Z? under the action of I as follows.
Let (:@,) ~ (k,,) if (k ) :g(k,,) for some g € I3.

m m’ m

Lemma 1.2. For each k € N, the equivalence class of ('8) is

Zi = { ()

(kla m,) = k}
The stabilizer of (]8),

{g€nifa() = ()}

18 the translation group I, = {((1) ’f) ‘ﬁ € Z}.

Proof. Since (,,]fl) ~ (:fl) via (' %), we restrict ourselves to k > 0, m € Z. We

determine the equivalence class of (,’fl) for £ > 0.
1) If (k,m) = 1, there exist 3, such that k6 —mp = 1. Setting o = k, v = m,
we get g = (: 'f;) € I3, such that

() = 9(), 50 () ~ (0)-

On the other hand, if (:L) ~ (é), there exists g = (3 ’g) € I3, such that

() =(5@), soa=ky=m

and
ko —mp =1, so (k,m)=1.

Thus, (k) ~ ((1)) if and only if (k,m) = 1.

m

2) Let (k/,m/) = k, k > 1; k/ — pk:, m/ et qkf, p Z 17 (p, q) et 1 Then by 1)’
(p) ~ ((1)), and there exists g = (: f) € I, such that

q

(59 ) = ()
Then /

(55 = G = ()
SO
K k

() ~ (o)-

Conversely, if (f;,) ~ (’S), for some (f: ?) e i, ak =K, vk =m/, (a,7) = 1 s0

(K',m') = k.
The Lemma is proved. 0

From Lemma 1.1 and Lemma 1.2 we obtain



Lemma 1.3. Let f(z,u,v) be a Iy j-invariant continuous function of z,u,v, Ctin
u and v. Then

f(zvuav) :f0(2)+2fk(zvu7v) (19)
k=1
where
fo(2) is [y -invariant
and for k € N
fr(z,u,v) = Z (Tgfko)(z)ek(57_7) (u,v) (1.10)
g€ \Io
where

(_k,fy) = g_l(g) and fro 18 Io-tnvariant.

Proof. The set of all terms of the series (1.3) is the union of all equivalence classes
under the equivalence relation

fk/m/(Z)ek/m/ (u, U) ~ fk//m//(Z)ek//m// (U, U)
iff there exists g = (CvY g) € I3 such that

fk”m”(z) = (Tgfk’m’)(z>7 (TIZ;/) = g_l (T’:L,”) (1'11)

By Lemma 1.2 this holds iff (", m") = (k',m’).
Therefore the equivalence classes M are given for k& € N by

My, = { fromr (2) € (u, 0) | (K, m) = Kk}
and

My = {f|(T,f)(2) = f() for g € T1}

Since the series (1.3) is absolutely convergent, we can rearrange it as follows,

f(z,u,v) = ka(z,u,v) (1.12)
k=0
where
fe(zuv) = > fum (2)€gm (u,v) (1.13)
(K m")=k

For each k the function fi(z,u,v) is I;-invariant.
For any term of (1.13)

erme (2) € (0, )
let g € I§ be such that (::,) =gt (lg) and let

from (2) = (Tefro(2),  fro(2) = (Ty=1 frmr ) (2).



Since fi(z,u,v) is invariant under I}y, and for gy € T’y
Ty, (fko(z)eko(u,v)) = (Tgofko) (2)exo(u; v),
the function fro(2) is I'w-invariant. Therefore

fk(z7u>v) Z (Tgfko)(z)ek(é,—'y)(u7v)

gEF]_\Foo

and Lemma 1.3 is proved. 0
Lemma 1.4. Forallgeli and k,m € 7Z
T, [i{kQ — 2kmaz +m*(z* + y*)}] = %{k'2 —2k'm x4+ m'* (2 + v}

where

Proof. We have
L( fim (2)€pm (1, 0))
An? o 20,2, 2
= [Afkm(z) + 7{1{: — 2kmx +m*(z* +y )}fkm(z)}ekm(u,v)
For the I} j-invariant function f(z,u,v) on M; given by (1.2) this yields
(L) (z,u,v)

= Z (Afkm)(z) + %{k@ — 2kmax +m?(2® + yZ)}fkm(z)ekm(u, v).

For g € I}
(T;Lf) (z,u,v) = Z (TgAfkm)(z)

km

4 (1.14)
+ 1T, [%{kQ —2max +mA(z? + yQ)}(Tgfkm) (z)} eprms (U, V)

where (1) = g71(%).
On the other hand,

(Tgf) (27 u, U) = Z (Tgfkm) (Z)ek’m’ (u7 U)

km
and
(LTyf) (0 0) = D (AT frn) (2)
. km (1.15)
+ %{k” — 2K'm'z + m" (2” + y*) ewm (u, v).

By the J-invariance of L, the series in the r.h.s. of (1.14) and (1.15) are identical
and A is [}-invariant.
The Lemma follows. O



Lemma 1.5. For each k = 0,1,2,..., the set of functions f, defined for k =
1,2,... by (1.10) and for k =0 by fo being I1-invariant form a subspace H;, of the
Hilbert space Hy, of square-integrable, I ;-invariant functions on Iy,  with measure

d’”—gydu dv.
Let Hy, be the closure of Hj.. Then

o0

i =Y PHs, (1.16)

k=0

the subspaces Hy of Hiy are invariant under the Laplacian L, and

L= @DLv, Li=Lly pu (1.17)
k=0

PT’OOf. Let 1 S ]{31 < kg, ]{Zi == 1{3151, m’l - —k'l’}/l, (71,(51) - ]., k‘é == ]{5252, m’2 == —]CQ’}/Q,
(’72,(52) = 1. Then

N|=

1
2 . ; 1 ]
/ / €2mk151uef27mk1'ylv672mk252u62ﬂ'2k2'yzv du dv % 0

1
2

N

if and only if
kiyi = k2da, ki = kaa.

But (k1v1, k161) = k1, (k22 k2d2) = ko, a contradiction, so

1 1
/2 /2 627rik161u€—27rik:1'y1ve—?ﬂik262u627rik2'yzv dudv =0
~1J-4
for 1 < ki < ky and all v € I3.
Similarly it is shown that the other three terms of (ep: s, €xymy) are 0. It follows
that (fi, (z,u,v), sz(z,u,v))HU =0 for 1 < ky < ky. Clearly,

(fo(Z),fk(Z,u,v)) =0 fork>1.

Now it follows from Lemma 1.3 that

Hlj == Z @ Hk
k=0

Let Hj, be the space of continuous functions f(z,u,v) in Hy such that f is
continuous and C! in u and v.
We shall prove that #,, is invariant under L by proving that L(#,ND(L)) C H.

Let fro € Hj, N D(L). Then, with (:1/,) = g_l(g) we obtain, using Lemma 1.3 and



Lemma 1.4,

(Lf) (2, 0) = {7 (Tofio) (e () |

QEH \Foo

-y {(ATg fro) (2)

QGH\FOO

 (Tyfuo) (= >4§

— Z {(ATgka)(z)+(Tgfko)(z)fg[zl_#kﬂ}ek,m,(u,v)

[k = 2k'm/x +m/*(2? + y)] }ek,m, (u,v)

g€l \Io 4
= Z {Tg [(A + 47T2k2>fk0} }(z)ek,m,(u, v).
g€l \Io

So L fi, € H}, provided A fo is continuous, and (L f)(z, u,v) has the series expansion
(1.10) with fro(2) replaced by (A + 4”2k2 fro) (2).
The Lemma is proved. U

By Lemma 1.5, the I} ;-invariant Laplacian L is decomposed into a direct sum
of operators L in invariant subspaces Hy.

For k =0, Ly is the Ij-invariant Laplacian A in Hrp.

For k > 1, let H} = Hp, = L*(Fr.;y ?dx dy), where

Foo={z=atiy] —b<e<l y>0}

and let LY be the [y -invariant, self-adjoint operator in Hr,_
k2
L) = A+ 4n*—.
Y
Let ¥, be the map from H) into Hy, defined for f € HY by

Sef = > (Tof)(Dersp(uv), g=(25). (1.18)

geH\Foo

Lemma 1.6. For each k > 1, ¥ is a unitary operator from 7—[2 onto Hy, and Ly
is unitarily equivalent to LY,
LYy = S LY.

Proof. Let f; € HY and let X f; be defined by (1.18), g; = (32 ’gj), i = 1,2. Since

glggl ¢ I, implies y; # 75 or 0 # s, for g1 # go mod [

(Zor F1(=)eriorm (), (T fo)(2)erionn (ws0) ) =0,

SO

(Zkf172kf2>Hk— Z <(Tgf1)(2),(Tgf2)(Z))H :(fl’f2)7'lroo’

n
g€li\lo !



unfolding the integral, and ¥, is unitary from H) = Hr_ onto H;. By the last part
of the proof of Lemma 1.5, for f € D(LY)

LyYif = Sy f
and Ly is unitarily equivalent to LY. O

We proceed to analyze for k£ > 1 the operators

2 2
9=y <—+—> T A T —LQ(FF :
Y

dx dy)

y2

or?  0y?
with the condition
f(%—l—z'y) :f(—%+iy) for 0 < y < oo.

Lemma 1.7. Let H = L*(0,00;y 2 dy). Then HY can be decomposed as a direct
sum of subspaces invariant under LY,

Hy = Z @Hkb kl = {emu@m(y) | om € H}

leZ.
with
0( 2milz il 2 O° K s
L™ o (y)) = : { Y52 + 4n” ( + 1%y >}Sﬁkl(y)‘
Yy Yy

Let

- 2 k2

L = —1 5 = +an? (y l2y2> in H
and

Ly =Ly, Li=) DL
=7

Then LY, is unitarily equivalent to Ly, via the map on(y) — ¥ (y).
For k > 1,1 # 0, the operator Ly has a purely discrete, simple spectrum con-
sisting of a sequence of eigenvalues

La My <A< <A<, ANy —— 0 (1.19)
with orthonormal eigenfunctions

W) em), - en), - - (1.20)

The operator LY, has the same eigenvalues \¥, with eigenfunctions

e o (y)

or
cos(2mlx )y (y), sin(2mlz)py(y).

10



For k> 1,1 =0 we obtain the operator

This operator has a simple, purely continuous spectrum, to be discussed in detail in
the following Lemma.

Proof. The proof is straightforward by separation of variables. O

Lemma 1.8. The operator Ly s self-adjoint in H with a simple, purely continuous
spectrum. The generalized eigenfunctions hi(y, s) are given for s € C, y >0, k> 1
by the Bessel functions,

hi(y,s) = \/§K25,1(47rky_1/2)

which are the solutions of the Bessel equation

_y2 thk (yu S)

k?2
e + 4772?hk(y, s) = s(1— s)hg(y,s) (1.21)

with the asymptotics

K,(y) ~ (i) ’ e Y fory — oo

2y
L(v) ry\—
Ky(y)~T<§> fory—0,v#0
Ko(y) ~ —logy fory — 0.

Also
K,(y)=K_,(y).

The other solution Iy,_i(mky~'/?) grows exponentially asy — 0 and so does not

contribute to the continuous spectrum.
The functions hi(y; s) are entire functions of s, and

hk(y7 1- S) = hk<y7 8)'
Moreover, for k € N

Lio = UM LaU ™ (8), s s) = (UMM (39), (UGR)S) () = kF G ~2).

Proof. This follows from well known properties of the Bessel functions. O

From Lemmas 1.5-1.8 we obtain

11



Theorem 1. For k e N, [ € Z, let
Hiy = SiHY,

where ¥y, is given by (1.18).

Then
Hry = ;@{ Z @HM},

l=—00
Hi is invariant under L and
L=Y"P{ > BLu}
k=1 l=—00

where
Lklzk (627rilxg0kl (y)) — ZkLgl (627T“x§0kl (,y)) — Zk (e2ﬂilzikl§0kl (y)) )

For 1 # 0 the spectrum of Ly is the sequence of simple eigenvalues A}, of Zkl
given by (1.19) with orthonormal eigenfunctions

Wiz 0.0) = Be(@™6(v))
= Z {Tg(emwgp@(y))}(z)ek(d_w(u’0)7 g= (3 ,g)

gEFl\Foo

Each N}, is a 2-dimensional eigenvalue of Ly, with eigenfunctions >, e*™ ot (y) and

e Mo (). N
The operators Ly,;, and Ly, with kfll = k%lg are unitarily equivalent via the

dilation ¢(y) — (1—1)1/2@<l—19)-

Iy Iy
Forl = 0 the spectrum of Ly is purely continuous with generalized eigenfunctions

Er(z,u,v;8) = Sphe(y; s)
- Z {Tg(\/gKQS—l(éLﬂ'kjy_l/?))}(z)ek(&_v)(ujv)’ 9= 9 (1.22)

gEFl\Foo

The series (1.22) is absolutely convergent for all s € C and defines an entire
function of s for any k € N, (z,u,v) € Fy,.
The function Ex(z,u,v;s) satisfies a functional equation

Ex(z,u,v;8) = Ex(z,u,v;1 — s).

There is no scattering and no resonances associated with Lyg.
Moreover,
Ey(z,u,v;8) = (SpU(K)STEy) (2,1, v;08).

12



2 The counting function for eigenvalues of L and
the Weyl law

We now discuss the asymptotic counting function for the eigenvalues of L. We
make use of the following result of Titchmarsh (|7] Ch. VII Theorem 7.5) where the
uniform bound on the remainder is obtained by keeping track of the constants in
the proof.

Lemma 2.1. Let ¢ € C'(—o00,00) be downward conver with ¢'(x) increasing on
(—00,00), q(z) — 00 as x — Fo0.
Let
M <A< <

be the (simple) eigenvalues of the operator

d2

M=
dx?

+q(z) in L*(—o0,0)

with eigenfunctions y,(x),

yn(x) + {\ — q(z) }yn(z) = 0.

Then | e "
’n—;/xl {\ —q(z)}2 dx <4+3—7T=K1
where
q(x1) = q(x2) = A
and
1 [ 1 14
N = #0a <X =2 [T g de o), 00)] <4+

for all q in the above class.

Let T be the unitary operator from L?(0, 00, ; y 2 dy) to L*(—o0, oo; dt) defined
for g € L*(0,00,;y~2 dy) by

f(t) = (Tg)(t) = g(e)e 2.

ol

Then
)

d
TLuT ' = M, = —t Lar®(KPe ! + 1Pe)

with the simple eigenvalues

1 1 2
Z<)\kl<)\kl<"'<>\zl<"'

13



Let

Nu(A) = #{Xy < A}
be the counting function for My;. By Lemma 2.1,

1
Ny () = — A— L
kl( ) W/]kl(A){ !

Jkl()\) = {t | % + 47T2<k’26_t + l2€2t) < )\} for A > Mgl

where

Am2 (k2™ + 1)} dt + O (M)

with

myg = min{1 + 4 (K’e~ + ) [t e R} = 1 + Am2KA312/33 . 9728
and

|Ou(N)| < Ky for all k1, \.
We have

V=2 [ (A
. N Trr(V) 4

Tu(\) = {t

To simplify the calculations we replace A by X' = (A —
asymptotic estimates with X' and at the end substitute )\

and

— (K" 4+ 1%e*) }5 dt + O (M)

k2e—t+l2€2t</\_z_t
A2 |7

AN

)/(47?), prove the

= (A= 1)/(47?) and

introduce the factor 2. For simpler notation we replace X' by A until then. So we
study the scaled problem with

where

Nu(\) = /J - {N— (K" +1?¢)} 2 dt + Op(N)
kl

Ju(\) = {t| ke + e < \}
for A\ > k%/312/33.272/3 and

|Okl()\)| < K1

for all k.1, \.
Setting u = ef, we get
where
Iu(\) = / A= (v +Pd®) }Pu du (2.2)
(V)
and Jg(A\) = {u=e¢"|t € J;;(\)}. By Theorem 1, this implies
N(A) = Z Ta(A) + Z On(N) (2.3)

ke l>1 e 1>1
Mg <A

mp <A

14



where we have not counted the double multiplicity of the A}, as eigenvalues of L. It
will be restored at the end, when we prove the Weyl law.
We estimate the last term of (2.3) as follows.

Lemma 2.2.

\ S Okl()\)‘ — O(\2). (2.4)

ki>1
mkl<>\

Proof. With 1 = A3712%/3 we have

‘ZOkl(A))SKl >oi=m{ Y 1 Y e Y b

k,l>1 kJi>1 kJl>2 k>1 >1
mp <l k4/312/3<u k4/312/3<u k4/3<u 12/3<M
We have
3/ u3/2k*2
E 1< // 1dkdl:/ dk:/ 1dl
k,1>2 1 1

= k,I>1
4/372/3 *r
k2Pl <p E4/312/3 <,

3/4

_ / {M3/2k_2(1 _ M_3/4) _ (,u3/4 _ 1>} dk < 13/?
1

and
Yottt Yy 1<t
k>1 1>1
k4/3<u 12/3<N
The Lemma is proved. O
We introduce
Ne(\) = > Iu(A)  for 1 <k < \¥4373/191/2

1<I<A3/2—23-3/22
N(A) = o N
1<k<\3/43-3/42

Ni(\) = > Ni(N)

1<I<\3/2k—23-3/22

N(\) = > Ni().

1<k<A3/43-3/421/2
From (2.1), Lemma 2.2 and Theorem 1 follows

Lemma 2.3.

3 Nia(A) = > I (\) + O\

1§k§/\3/43—3/421/2 1Sk§>\3/4373/421/2
Ny (N) = Ne(\) +O0(X2), O] < KN for all k
N(A) = N(A) +O(\7?).
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We now study the asymptotics of Ni(A\) and N()\) through approximation of sums
over k and [ by integrals.

Lemma 2.4.

> Lia(\)

2§k<)\3/4373/421/2
\3/43-3/491/2 .
2 _ L _q1y5 =
S/ dk' {)\—(k'u ' u?)zu 1}2u Vdu < KN4,
1 Jpr

> Nut(\) = O(N*?).

2§k<)\3/43_3/421/2

Proof. For 2 < k < \3/43-3/421/2

La(\) = /k X A= (Fu '+ uZ)}%u—l du
2u—1+u2<

k
< / dk’/ (A= (K*u™ +u?)}
k—1 E2u—l4u2<)

Adding over k, we get the left inequality of the Lemma. We estimate the integral

o=

utdu

_ A\3/43—3/491/2
I= / di! | = (P )} e du
1

Jk’l

Set u = vAY2, k' = 2\3/4. Then

~ 1
I =)\ / dmdv{l—vQ—xQU_l}Qv_l.
A73/4Sx§373/421/2
27 1402<1
The positive solution z(v) of the equation

2 2 1:()

1—v°—z%v~

is
r=@w-v)2 0<v<l

The function

g(v) =v—v* with ¢'(v) =1 — 3v% has
max g(v) = g(371/%) =2.373/2

0<v<1
SO

_ _ 9-3/491/2
z(v) = g2(v) has Org%xlx(v) 3752

Therefore

. (v7v3)1/2 )
I:)\5/4/ da:/ dv{l—vQ—xQU’l}Qvfl.
A z2v—1402<1

—3/4

16



Setting z = (v — v3) 2z, we get

- V9 | 1
I= >\5/4/ dv(1 — 02)0_2/ (1- xl) dry, 0<wv <wvy <L
v1 )\*3/4(11 v3)—1/2

With z; = sin ¢ we get

1 ;
/ (1 —xf)l/Q dry = / cos® pdyp
A3/ (p—v3)—1/2 arcsin[A\—3/4(v—v3)~1/2]

N [2 + a5 290} arcsin[A—3/4(v—v3)~1/2]
=2 — Larcsin [)\_3/4(1) — U?’)_l/ﬂ

. %)F?’/‘l(v . U3)71/2 [1 . )\73/2(1) . 1}3)*1}1/2
s

g
S0 .
I< )\5/42/ dv(1 —v?)v 1?2 = N/ K.
0

It now follows from (2.5) and Lemma 2.3 that

> Ni(A) = O(X¥?),

2§k<)\3/4373/421/2

This completes the proof of the Lemma.

Next we approximate for each k, Nk(A) by the integral

)\3/2]€ 23 3/22
Ik()\):/ dl’/ I0— (B2 + 1%02)) 2 du,
1 Tt (N)

Lemma 2.5. Ny(\) = I(\) + O(\/Y) uniformly in k.

N(\) = > Ii(\) + O/,

1§k<)\3/43_3/421/2

Proof. For fixed k € N, [ =2,3,... we have

l+1
/ / — (K*u 14 %y %) } u”
Tr(N)

/JH = (Ru + P du

/ dl’/ — (Kt + %)) du,
-1 T (A

17
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Summing over [ = 2,3,... we get

A3/2)—23-3/29
— 2
/ / — (KPu ' 41 2} u !t du
2 T (A

1

< Z / A= (Fu" +Pu?) e du (2.8)

1eN, 12 7 Tki(A)
)\3/2k—23—3/22

< / / — (K*u™! l'2u2)}%u*1du.
1 Jkl’

The difference of the r.h.s. and the Lh.s. of (2.8) is

/ dl / — (P )
J,

(2.9)

< / A= (KPu '+ uz)}%u_l du.
Jrk1(N)

Summing (2.8) over k € N, we get

A\3/2f—23-3/29

> / dl’/ (= (B + %)} 2 u " du
Jkl’(/\)

1<k<\3/43-3/421/2 2

< Z Z /J N A= (Fu '+ l2u2)}%u’1 du (2.10)

1<k<)3/43—3/421/2 [eN,i>2
>\3/2k. 23 3/22

S / / k2—1+l/22}u1
T (A

1</€<)\3/43 3/491/2

The difference of the right hand side and the Lh.s. if (2.10) is established by summing

(2.9) over k and is equal to
/ dl’/ e LS
1 J

1<k<)\3/43 3/491/2 kl’

< ¥ (= (W +u2) 2 u du (2.11)

1§]€<)\3/43—3/421/2 Jr1

S LRI S
2<k<\3/43-3/421/2
We have

= [ - w2} 2u du = O(MD). (2.12)

By Lemma 2.4,
> T (\) < KN4, (2.13)

2§k<)\3/43_3/421/2

18



By (2.10)—(2.13) we have

1
g E / A= (Ko + Pd®) }Pu " du
1<k<\3/43—3/421/2 [EN,I>>2 Tri(A)

A3/223-3/29

(2.14)
— Z / / 2*1+l’22}u1u
1<k’</\3/43 3/421/2 l
+ ON4).
Also, by Lemma 2.4
1
/ ™t ) u du = O(NY). (2.15)
2<k<)\3/43 3/491/2 Jkl
Adding (2.12), (2.14) and (2.15), we conclude the proof of the Lemma. O

We now determine the asymptotics for A — oo of the integral Ix(\) for each
fixed k.

Lemma 2.6. I;;(\) £ Nk™*% for fized k € N.

/dl/du (= (P + 2a?) !

1<I<A3/2k—23-3/22
E2u— 141242 <\

Proof. We have

Settin
° w=ov\"k2, =Nk

we get
I(\) = N2k 2 /dm/dv {1—- (! +x2v2)}%v_1. (2.16)
AT3/2k2 <2 <373/22
v 4202«

We discuss the domain of integration, given by
AP <p <3772 0<az<(1- Ufl)%vfl.

Let f(v) be the function defined for 1 < v < oo by

1—vt ,
fv) = —5—, f(1) = lim f(v) =
(% V—00
3—2v
Fw=2"2 F(3) = & = max f(0)
Since 373/%2.2 > \ﬁ, x is restricted by
AP << (1—v 2ot (2.17)
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Since > A73/2k2, v is restricted by

1—o !t

flv) = —5— > 2% (2.18)
v
Let vy < vy be the two roots in (1, 00) of
1 — —1

U;’ = A73K (2.19)

When A — oo for fixed k, v1(A) N\ 1, v2(A) 7 o0.
Asymptotically, for fixed k < \3/4373/421/2
va(N) ~ A3/ 2 as A — 0o (2.20)
1)1()\) —1
vi(A)

Now we interchange the order of the integration in I;(\), replacing the limits for
x by (2.17) and for v by the roots v; = v1(A) and vy = v9(A) of (2.19). We obtain

from (2.16)
v (1—v~1)
I(\) = )\2k_2/ dv/
V1 A—3/2k2

:>\2k‘_2/ dv I, (v)

1

~ AR o () — 1~ AR as A — 00. (2.21)

NI

1 1

vl —
1— 1
dm{ : —x2}2
)

(2.22)

where

(171)’1)%11’1 1—¢p ! %
Iy(v) = / d:z:{ o — :c2} . (2.23)
A

—3/2[2 v
: (=13
We calculate I;(v). Setting = = x1, we get
1—ovt ! 1 1—v 1)
Ir(v) = 5 / (1—a2%)2dr, = —2)[k0(v). (2.24)
v A—3/2k2¢(1—p—1)—1/2 v

Lio(v) = /A (1—2%)2 da. (2.25)

—3/2k2v(1,v—1)—1/2}

Setting x = sin ¢, we get

/2
IkO(”) = / cos? wdp
arcsin[A—3/2k2vp(1—v—1)—1/2]
w/2
_%/ (14 cos2¢p) dp
arcsin[A—3/2k2y(1—v—1)=1/2)

/2
= [% + < sin 2g0] (2.26)

arcsin[A\=3/2k2yp(1—v—1)—1/2)

o1 [\ —3/27.2 v }
1 — 5 arcsin [)\ k 1 v—l)%
— e ———|{1- L }é
(1—v1)2 1 -0t
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From (2.24)—(2.26) we obtain

/ dv Ik(’l)) = FM(Ul, Ug) — Fkg(vl,ﬂg) — Fk3<?]1,1]2) (227)
v1
where
v2 /1 1\ 7 T (1 1 /(1 1
Fk1<U17U2):/v (ﬁ—ﬁ) =7 (v—l—v—2> 3 <U—%—U—%) 7 (2.28)
2 /1 1 v
Fio(v) = / (— - —) L arcsin [)\_3/2162—}&1 2.29
k2(v) o \V2 03 )2 (1—0v-1)2 (2:29)

_v21 1 1{y—3/27.2 v 3,4 v? 3
Fkg(v)/m (Uz Us)Q[A k(1—v—1)%]{1 A kl_v_l} (2.30)

Using the asymptotic limits (2.20), (2.21) of v1(A) and ve(A) we get from (2.28)
for fixed k € N

Fia(v1,v9)
s 1 —3/27.2 m 1 —37.4
1 (1+)\—3k4 MR ) s\ A ) Ao
and a calculation using that v1(A) \ 1, v2(A) * 0o shows that for fixed k > 1
Fyi(v1,v9) N g for A — oc. (2.31)

We consider next Fyo(vy,v2) and Fys(vy, vs). For fixed k and v in both cases the
integrand converges to 0 for A — co. We have by (2.18)

L) I
T—v -

Also,

so for all k& and v € (1, 00)
1 . |\—3/2,2 v 1 1\«
(ﬁ‘ﬁ)“cglnb /km]<(ﬁ‘ﬁ>§

2 3
A3/2k2%] {1 - >\3k4v—_1} <11

By Lebesgue’s dominated convergence theorem and the asymptotic limits (2.20),
(2.21), for fixed k € N

and

Fkg (Ul()\),vg()\>) w 0 (232)
Frs(v1(X), v2(N)) ——0 (2.33)
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Moreover, Fyo(v1,v9) > 0, Fi3(v1,v2) > 0, so by (2.27) and (2.31)

v2(A)
/ dvli(v) <
v1(A)

and by (2.22) for each k > 1

as A — oo

B

L(\) < Nk2E

Inserting (2.31), (2.32), (2.33) in (2.27), we get for fixed k € N

va () T
/ Iy(v) (v)dv /S — as A — oo (2.34)
vi(A) 8
and
LX) £ Xk?% for A — oo. (2.35)
The Lemma is proved. O

Theorem 2. The counting function N(X) for the eigenvalues of the operator L
satisfies the Weyl law,

1
N(A) ~ ——X*  for A\ — co.

1927
Proof. 1)
= Z Ni1(A) +22Nkz(>\)- (2.36)
k>1 E>1 1>2
M1 <A M <A
By Lemmas 2.4, 2.5,
> Nu(d) =00\ (2.37)
k>1
me1 <A
and
> Y Nu() Z Ii(\) + O\, (2.38)
k>1 1>2
Mgy <A

From Lemma 2.6 and (2.36)—(2.38) follows

f:w: = =)

s yg .
k=1
2) Let C = I — . We prove that for A > Xy, N(\) > C)A?. Choose K such
that
= 1
Z ﬁ < €.
k=K+1
As in 1) we see that
=#{NG S A[LeENE> K +1} S Zel’ (2.39)
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Also, by Lemmas 2.5 and 2.6 there exists Ag such that for A > A

=1
S Nk(A):#{AglgweN,1gkgK}>g(zﬁ—ew. (2.40)
k=1

1<k<K
From (2.39) and (2.40) we get for A > A

T /e 1 ™ o7
N(A) 2 — — =2\ = (— - —g> 2. (2.41)
4 < |2 ) 48 4

The Weyl law. By 1) and 2),

N(A) ~ TN for A — o0,

Replacing A by X = (A— i)/(47r2), introducing the factor 2 in the formula for Ny, (\),
and taking into account the double multiplicity of A}, as eigenvalue of L, we obtain
for the counting function of the operator L

N(A) ~ - )\? for A — oo.

192w

The constant Cyy of the Weyl law equals Z/(327%) = 1/(1927) where % is the
volume of the Jacobi manifold M; and 3272 is the area of the unit sphere in R*.
This concludes the proof of the Weyl law for Lr, . O

3 Normal subgroups of finite index

Let T" be a normal subgroup of I of index I and let I; = I" x Z be the reduced
Jacobi group associated with I', a normal subgroup of the modular Jacobi group
[ ; of index 1.

Let 8 be the width of I' and let

Lo ={G1 |l ez}

be the Iranslation group of I'..
The I'j-invariant Laplacian

0?02 1[0 d 0 02
Lo — 2 (N, 99 2, 2y 9"
b Y (8:152 * 83/2) Yy <8u2 *ou ow (ot )81)2)

is a self-adjoint operator in the Hilbert space

Hy, = L*(Fry % dedy), Fr, = Fr x {(u,v)| —

Lemma 3.1. Let f be a [j-invariant, continuous function of z, u, v, C' in u and

v for fixed z. Then
Fzu,0) = fim(2)ewm(u, v)
k,m
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where /
Jrrm (2) = (Tgfkm)(x)a (TIZ,) = gil(,’;) forgel.

Proof. This is proved as Lemma 1.1. O

Let (:1) ~ (k/,) if (:L) = g(:;,) for some g € I'. Let [ = Fl/I‘, g=gl € f,

U=(1), Ly={U"i=0,1,....,8—1}.
Choose g1, g2, - - -, 91/ € Il with g, = ((1] [1)), such that
{91sli=1,2,...,1/8} =T /T, 4

or

/T ={qU'T|i—12,...,1/8, j=0,1,...,8—1} (3.1)
By Lemma 1.2, the equivalence classes of Z? under ~ are given by
1
z={() | wom) =k} k=12

Lemma 3.2. For fited k = 1,2,... the equivalence classes of Z3 under ~ are gen
by '

Tg(5) =TqU(}), i=1,...,1/8, j=0,...,8—1
Let

ki k
() = 9:0)-
The stabilizer of (:;) is [ = gilog; *
The parabolic subgroup I’ of T is the stabilizer of the cusp g;(00).

Proof. By definition of the g;, for i # j g; (]8) % gj (]S), so{l'g; (]8)} are distinct classes
under ~ fori=1,...,1/8.
On the other hand, U’ (]8) = (g) forj=0,1,...,8—1, so

TgU () =Tgi(f) forj=01,...,8—1.

By (3.1) the distinct equivalence classes I'g; (]8), i=1,...,1/p are all the equivalence
classes under ~. O

We proceed to characterize the I'j-invariant functions as it was done in Lemma 1.3
forI' =13.
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Lemma 3.3. Let fyo € Hr, = L*(Fr;y 2dzdy) and fori=1,2,...,1/8

fio(z,u,v) = fgi (fko(z)e%ik“)
= (Toufr0) (2)epm, (w0), () = 97 ()
fli(z7uvv) = Z ( ?Jfko)(Z?uaU) (3.2)

ger /Iy,

= Z (Tngifko)(z)ek,m,(u,v), (:1//) :g_l (T’:LZZ)

ger /Iy,

Then the functions fi(z,u,v) are Ly-invariant and

fi(z,u,v) = (Tgif,i)(z,u,v), i=1,...,1/p

where
(fngli) (Z, u, U) = Z (TgiTgka) (Z)ek”m” (ua U)? (TI:L/’/’) = gzilgil (g)
g€l /L,
and by the choice g1 = (4 ")

Sz, u,v) = Z/ (Ty fro) (2)epmr(w0), (1) = g7(5)- (33)
Proof. °°
o) = 30 (T fuo) e ) () ="
_ e%:: (T3, (T, T5Ty,) fro) (2) e ((T'f:,) = gfl(giﬁ_lgfl)(§)>

Since T is normal, setting g = g; ' §g;, this equals

S™ (1T fra) (2) g, 0) ((5) =o' (3))

g€er /I,
Z (T fro) (2)€pmmn (u, ) ((7’;’,’,) — g (18)>
geF/F
= (Ty i) (zu0), i=1,....1/B
The Lemma is proved. 0

Lemma 3.4. For each k> 1 andi=1,...,1/5 the map
i — fi=Tofu

giwen by (3.2) and (3.3) is unitary from the Hilbert space Hy,, of Iy-invariant func-
tions of the form given by (3.3) onto Hi, = T,,Hiy.
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For ki # ky and for ky = ko, i1 # 1o, the Hilbert spaces ”H?kl and ”H?,m are
orthogonal. The subspaces Hk, are invariant under L, and for each k > 1 the
operators

Ly =L, i=1,....1/8 (3.4)
are unitarily equivalent.
With
1/B ‘
Lrv=Y EPLiy fork>1 (3.5)
i=1
and o o
we have -
Ly, =Y DL (3.7)
k=0

Proof. Fixk>1,i=1,...,1/p.
Then for fi € L*(Fr,), j = 1,2, by Lemma 3.3, with D = {(u,v)| — 3 < u <

1 1 B
3 —U<U§§}

(flilv fli2)L2 FF = /F D (fngkll)(zv u?”) (fglféz) (Zv u, U) dp“('z) du d’U

- [ @hs) G tun)} (33)

gEF/F

Z (TgiTéfk0,2) (z)e_k,,’_m,, (u,v) }d,u(z) du dv

ger /T
() =997 @) (o) =975 ()

Since (:L/,) # (k/,/,) iff ¢ # ¢ mod I, this equals

/F Z (T4, Ty fro) () (Tg, Ty fro,2) (2) dpu(2)

_ / Y @) )T fiez) () duz)

/F Z (Tyfro1) (2)(Ty fro2) (2) dpa(2)

gel' /T

= (fk;la fl?Q)LQ(FFJ)

since Ty, Fr = Fr, which can be seen as follows. We have a fundamental domain Fr

of the form ,
Fr = U TgiFFl
i=1
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and

I I
ng(UTgiFH) = U(TgingFH U FH
=1

This proves that the map f} — fi = Tgi fx1 is unitary from Hi, onto Hi, for
i=1,...,1/B.
If ky # ko and i.j = 1,...,1/3, then (K',m') = ki # ky = (K", m”) for all pairs

in the series
(flila flzg)LQ(FpJ)
— /FFJ { Z (TgiTgfk’lo) (2)€prm (1, v)} (3.9)

() =971 (o) = 95571 (0)-

Therefore all terms in the series (3.9) are 0, so (f}, f,zQ) =0, and H},,, and 'H{;,@
are orthogonal. '
To prove that (f};, fi,) =0 for k > 1, i # j, we write

(s = [ {3 TTibon) @epmlu )}
DXL geT T,
> Ty, T3 r02) (2)e gy (u,0) }dﬂ(z) du dv
Ger /I,

() =997 () (o) = 95571 (0):

We have '
U = (). =0
and
99797 (6) #57'(5), since g7 (5) ~ 5 (5)
SO

(k/,/,) £ (Tkn/,) for all terms, and (f,il,iQ) =0

m

so the Hilbert spaces Hk, and 7—[% . are orthogonal for 7 # j.
The unitary equivalence of the operators Lk,, i = 1,..., 1/ then follows from

the fact that Lr commutes with Tg for all g € T,
LTy ft = L fi = LTy, fro = Ty Lo frn = Ty Lby frn, i=1,...,1/5.

The Lemma is proved except (3.7) which will be proved after the proof of
Lemma 3.6. [l
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Lemma 3.5. For k > 1 the operator Li., is unitarily equivalent to the operator

kQ 8 82 k'2
0 _ 2 _ 2 2

in ’H%k =Hr, = LQ(Fpm;y_dedy), Fr, ={z+iy|lo <z < B,y > 0} via the map

oD f(z) — (Epkf) (z,u,v) = f,i(z,u,v)

where
(Zref)(z,u,v) = Z (Tyf)(2)ers,—py(w,0), g = o 5,
g€l /I,
and
LyySref = Srilgyf  for f € D(L,).
Proof. This is proved as Lemma 1.8, replacing 17 by I'. U

We notice that Hp, and Ly, are common to all I' with the same width 3, while ¥y,
and L}, depend on T.

Lemma 3.6. For k > 1 the space Hgk can be decomposed as a direct sum of sub-
spaces

H%k = Z @Hg’klv H%kl = {627ri'8_111805kl(y) ‘ <Pﬁkz<y) € D(Eﬁkl)}

leZ

where the spaces Hy, are invariant under L, and

L%k = Z EB L%kl

leZ

where

0 0
L,Bkl = LBk|HO

Bkl
mif mif~Hx (T
L%kz(eg o Sﬁﬁkz(y)) =7 (Lﬁkl(pﬂkl)(y)
and

. L d? k2
(Lﬁkz‘z%kl)(y) = {—y 2d_y2 + 4 (?ﬂ 2l2y2> } ‘Pﬁkl(y)-

The operator Eﬁkl is unitarily equivalent via the map g(y) — f(t) = g(e)e™/? to
the operator
2 1
Mgy, = e + 1 + 47 (ke + B21%e*)  in L*(—o00,00).

For k >!, 1> 1, the operator Eﬁkl has a simple, discrete spectrum

L R S R AR B LR VD VW —— 0, (3.11)
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with real, orthonormal eigenfunctions ¢f,(y) giving rise to even and odd eigenfunc-
tions of L,

Qi (y) cos 2wz, @y (y)sin 2 . (3.12)

For k > 1,1 =0, the operator f’ﬁko has a simple, purely continuous spectrum,
identical with that of Ly analyzed in Lemma 1.8, in fact

Z;Fko = Lk()-

Proof. Let D(L;,) be the space of continuous functions in H%,, C' in (u,v) and let

f be a function in D(L{,). Then f; has an expansion

fi(z,y) = Z 80,31@1(3/)32“/87%

leZ

and

d2 ]{?2 _ riB— Ll
B e TR |

leZ

Since LOF i 1s the closure of Lglk, the first part of the Lemma follows.

A calculation shows that Eﬁkl is unitarily equivalent to Mpg,;.

For [ # 0 the operators E,Bkl have purely discrete simple spectra. The function
k*e”" 4 B7*1?¢* has minimum EY/312/3372/3 .3.272/3 Tt follows that the spectrum
of Ly, is a sequence of simple eigenvalues \j;, satisfying (3.10) and (3.11).

For I =0, Lgq = Lio stemming from Ly ; which is treated in Lemma 1.8. [

Proof of (3.7) of Lemma 3.4. Fix k > 1,1 # 0. Consider for j = 1...,8 — 1 the
functions obtained from (3.2) by replacing g; by ¢;T”,

(z,u,v) = Z (T3T4,Tvs fro) (3.13)
ger /Iy,
with
n w8~ Nz
Jro(2) = S%kl(?/)ez pte
Then ‘ ‘ . ‘
(Tv fro) (2) = @l ()™ 1D = fro(2)e®™ 1,
SO

,ij(z,u, v) = 62”’871”]‘,@(2,%1}) for all fio(2)
with fixed k > 1,/ #0and j=1,...,5— 1.
For | =0, - '
J(zu,0) = fi(z,u,v), j=1,....0—1.

It follows that the series (3.13) contribute the same functions as the functions
fi(z,u,v) given for j = 0 by (3.2) and (3.7) follows. O
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We conclude this section by proving the Weyl law for normal subgroups of Ij.

Lemma 3.7. The counting function Np(\) for the eigenvalues of the operator Ly
with index I of ' in 1 satisfies the Weyl law

I 2
NF()\) ~ ﬁ)\ fOT‘ A — o0.
Proof. We have
l<l+%§l+1 forl=1,2,... i=1,....8 (3.14)
Lty fori=1,....5 (3.15)
— ori=1,...,0. )
5 B

The set of eigenvalues of Ly is the union over k,! and 3 of the sequences of
eigenvalues of LY,

b = sy =002 =18 (3.16)
By Lemmas 2.1 and 2.2
#{\ y <A = Toars ) + Owi(1) (3.17)
where
2 k? i\ 2 9 V2 1
I, i()\):/ A — A4 —+<l+—) Yy y - dy
i T i1i/p(N) ) B
and
Z Oni(1) = O(X*?). (3.18)
kli

It therefore suffices to estimate ), [k;,l—f—%()‘)'

We consider first the sum over [ > 1 and then { = 0.
For fixed k,l € N we have

L1 (A) < Ly ppon

()\) < e & [k,l+%<)\) < Ik,l‘i’%(A) < [k,l<)\)

It follows that for fixed k,l € N

B
Blri1(A) < Z [k,l+%()‘) < Blki(N)

i=1

and hence ,
BY () < ZZIk7l+%(A) <BY TN (3.19)
1>2 >1 =1 >1
By Lemma 2.4
D La(h) = 0. (3.20)
k>2
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Adding (3.19) over k and using (3.20) and I;;(\) = O(AY/?), we get
B
ZZZIWW =B 3 Iu(\) + 0N/, (3.21)
k>1 1>1 i1 k>1 1>1
From (3.17), (3.18), (3.21) and Lemma 2.3 we get

#{N s SAR2LI2Li=1.... 8} = BN(\) + O(N*?). (3.22)
For | = 0 we get as in the proof of Lemma 2.4
B
DD s =00, (3.23)
s

Adding (3.22) and (3.23), we obtain the counting function
Np(A) = BN(A) + O(X¥/?). (3.24)

In the asymptotic formula (3.24) we have taken into account the fact that each

eigenvalue A\, of LY is double with eigenfunctions g&Bkl(y)eiZWiB‘lla: as in the
5

case of I1. By Lemma 3.4, A7 i as an eigenvalue of Ly is further degenerate by the

factor 1/0.
Therefore we obtain for the total counting function N (A) the asymptotics

No(N) =T/3-BN(N) +O(N¥?) = IN(X\) + O(\*/?). (3.25)
From Theorem 2 and (3.25) follows Lemma 3.7. O

From Lemmas 3.4— 3.7 we obtain

Theorem 3. The Hilbert space Hr, can be decomposed into a direct sum of invariant
subspaces

1/8 1/8
Z@{ZZ D (L DHiu) DY Hino}
where ' _
Tkl = TgiszH%kz
and

193 @(z@%)@@%}

l=—00

where L&y, is unitarily equivalent to Lﬁku k>1,1>1,i=1,...,1,

LirlegiEFk (e%iﬁ_ ZxSOFkl(y)) T erlsz{ezmﬁ_ lx@,@kl‘ﬂrkz)(y)}-
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For 1 > 1 the spectrum of Lk,, is discrete with eigenvalues N\, given by (3.1) and
eigenfunctions

ni T n mif Lz
Uy (z,u,v) = Ty, Z Tg(@kz(?/)ez o )ek(éu,—'yv)<u7 v).
g€l /T,

For each k> 1 and | = 0 the spectrum of Ly, is continuous of multiplicity I/[.
The counting function Np.(X) for the eigenvalues of Ly satisfies the Weyl law

1
NF ()\) ~ [EAQ

4 Perturbation by modular forms
We consider the subgroup I' = I'(2) of index 6 in I3. The translation subgroup I’y
is

Lo={(Y)|lez}={AleZ}, A=(?3)

and the width § = 2.
In Lemma 3.2 we choose for g1, g2, g3 the powers of the elliptic element of third
order

e=(41), =) =00 %)~ 6
g1 = (é (1])7 g2 =€, (gs= 62 = 671-

The group I3 /I is generated by
91, U, 92, 92U, g3, 95U, U = (7).
I'(2) is generated by the parabolic elements
A= ((1) f), B=cAe ' = (3 _01) o~ (_12 N, S=e*Ae? = (5 :g)

with the relation
ABS =1.

We have

We define the function F(z) b
F(z) = P(z) —3P(2z) + 2P(42) = E5(z) — 3F5(22) + 2E5(42)

where

z)=1- 2420(71)62’”"2 = Ey(z) — %, o(n) = Zd
i=1 din
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and the Eisenstein series Fy(z) is a modular form of weight 2. The function F'(z) is
a holomorphic form of weight 2 for the group Ij(4) such that F'(co) = 0.
From the relation
r@) = M)}

we obtain the holomorphic form of weight 2 for I'(2) defined by

Based on G(z) we define a group of characters y, on I'(2) as follows. Let

I= Z G(z)du(z) = /2”1 G(z)du(z) = I +ils.

)

It is easy to check that I; # 0. We normalize G(z) by setting
G(z) = I7'G(z).

Then i i
I= ]1—1/ G(z)du(z) :/ G(2)du(z) = 1+ il ',

" [M@M@:[H@@@@:o

We define a group of characters y, on I'(2) by

gzo __

Xa(g) = exp {2m’a Re G(z) du(z)}, a eR.

20

The integral is independent of 29 € Fr (), and

Xa(A) =1 for all «
Xa(B) = €™, xa(S) = e72m.

For o # 0, the character x,, closes the cusps 0 and 1 and keeps the cusp oo open.
A family of Laplacians L, is defined by

0? 0? 1/ 02 0 0 0?
L -2\ (5,99 2 29
“ Y (6’3:2 +8y2) Y <8u2 ¥ 9u ow T4y )81)2)

on Iy, -invariant functions,

D(La) = {f € HFJ | Laf € HFJ’ (Tgf)(sz) = Xa<g)f(sz)
for g € '(2), (z,w) € Fy, }

We proceed to analyze the operators L, and their spectra. An extension of
Lemma 3.1 to functions transforming under I; with character y, gives
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Lemma 4.1. Let f be a Iy, -invariant, continuous function of (z,u,v), C* in u
and v for fived z. Then

(z,u,v) kam )erm (U, V)

where

fk’m’(z) = (Tgfkm)<Z)Xa(g)v (k/) =g 1(:1)

We characterize I'; ,-invariant functions by extending Lemma 3.3 to the case with
character y,.

Definition. Let fyo € Hr, and fork=1,2,3,...,i=1,2,3, a e R\ Z

fli()(za u, U) = Tgi (fk0(2)62mku) = (Tgifko) (Z)ekzml (u7 U)’ (TIZLZ) = gi_l (g)
flf:oz(z7 u, 1}) = (Ei,aka) (Z: u, v) = Z (Tgaflio) (27 u, U)
ger /Ty,
= D (1575 f10) (2)Xa @) ey (1, 0), () =g (). (a1
ger /Iy,
Set §=6i99; " Xia(9) = Xa(9) = Xa(9:99; )-

Since I, = g;Th0g; *

flia(zvuav) = Z (TgiTgka) (Z)Xa(giggi_l>ek§m;(u7 U) (:11’) = gz_lg_l(lé)

geF/F

=To > (Tfio) @ al@ewm(ee) () =97 (0)

gEF/F

and I" is normal, we get from (4.1)

The group T, is generated by A, T2 by B = g,Ag, ' and I3 by S = g3Ag; " and
Xla(A) = Xa(A) =1, X2a(A) = Xa(B) = 627rio¢7 X3a(A) = Xa(S) = e 2T
Lemma 4.2. The functions fi (z,u,v) are Tj,-invariant. For ky # ko and for

k'l = k2; { 7é j; fkloaszo € HFoo

( klafk:o, kwhi@o)%]:@

while . .
(3% o Sr0, Ei,ahko)ﬂrj = (fo» hkO)HF

The operators Xt . are unitary from Hr. to Z};,a/pr =H: fora e R\ Z.

a

Proof. For ky # ko, (kol) ot (%2), SO gflgi_l(%l) # Bilgj_l (kOQ) and

(ekllimllz ek, m2]> =0
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for each pair of terms in Zfﬂa fro and Zi/,%a hio so (Z;ﬁ fro, wa hko) =0
Fori# jand h e I'/TZ,

(5) =370 () # bt () = ()

since }
9. (c) 7 9;' () and geT/TL, hel/TL.

Hence for all ( %), (kg}l/)

m;

(ekgmg, ek}/mg/) =0
and

( kv k05 27, ahko) =0.
FOI‘ Z :j, Z = 1,2,3 and fk()’l,fko’g c HFOO,

(Zh afro.1> B fro2) e

- / { Z (Tngifk:O,l)(Z)Xa(g) (627rik:’u627rim’v + e—27rik’ue—2m‘m’v)}
Fr

o gel

{ Z (m) (Z)Ya(ﬁ) (627rik”u€2m'm”v +€—27rik”u€—27rim”v}
hers,

du(z) du dv.

Since (:1/,) # (7]::,/,) iff § # h mod I, this equals, setting § = 9:99; h= 9:99; ",

/F D (1o Ty fron) () (To Ty Froz) (2) dua(2)

gel /T
/ Z (Ty fro1) (2) (Ty fro2) (2) dps(2)
Tg; Fr gel /T
/ Z (Tyfro1) (2)(Ty fro2) (2) dpa(2)
Fr geT /T,
- . fro1(2) fro2(2) dp(2),

using Ty, Fr = Fr and unfolding the last integral , and for ¢ = 1,2,3, o € R,
E=1,2... } ‘
(Sh.afro1, Eﬁcﬂka,Q)HFJ = (fro1, fk0’2)"rtroo‘ O

Definition. Let L% be the operators in Hr, defined for k = 1,2..., 7 = 1,2,3,
aeR by

- 2 P 2 .
07 0 _ ) 2 2 05
LY f = { y <_8:c2 + _ay2> e }f for £,LY f € M.
and f(2 +iy) = f(iy)xja(A) fory > 0.
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Lemma 4.3. The orthogonal Hilbert spaces ”;’-Lf€ defined fork=1,2,...,j=1,2,3,
and o € R by

J_yJ
Hk - Zk,aHFoo
are invariant under Ly, and

=3B Y BH

§=1,2,3

The Hilbert spaces ’Hia are invariant under L., and the operators

Jj o _ ,
Lka - LOZ'H?W

are unitarily equivalent to L% via the maps Ef;a
Proof. This follows from Lemma 4.2, (4.2), and the fact that
Sholin = LaSha  on D(LY,). O

We further analyze the spectra of the operators Lg{x, 7 =1,23.

For j = 1, xia(g) = 1, so LY = LY = LY, and the spectrum is given by
Lemma 3.6.

For 7 =2,3, a € R,

0? o?
02y [ 2 02
Lkaf—{ Y (82+8y)+47r y}f for f, Ly f € Hrn.

and ‘
f(2+iy) = f(iy)e*™™ for y > 0.

We separate variables as for &« = 0 and obtain

Lgi - Z @ Lkla

leZ

Lemma 4.4.

where '
D(Ly,) = {em(lm)gg@ma(y) | P11 € D(Lia)}

= - 2 & + 4r? k—2 + [ta 2 2
Y a7 ) 5| v
with domain

D(Lyia) = {@km € L*(0, 005y 2 dy) ‘ LitaPria € L*(0, 00,577 dy)}.

and

Then forl € Z
Lo (€™ %04, (y))
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We now discuss the spectra of the operators Ly, for k =1,2..., 1 € Z, 0 <
|a] < 1 and the limit o — 0.

Lemma 4.5. For | # 0, the spectrum of Ly, is discrete and simple, consisting of
a sequence of eigenvalues

(@) < Ag(a) <o < Ayla) < -+

with eigenfunctions
Qpllcl(&)a Soil(a)a s 7(102[(04)’ te

For a — 0,
Api(@) = AR (0),
() = ¢ (0) = g in L*(0, 003y~ dy).

Proof. The fact that for [ # 0, 0 < |a| < 1, the spectrum of Ly, is a sequence of
simple eigenvalues follows as for a = 0.
Consider the quadratic form

> &z k? [+ a\2 )
(Liiatp, ) = ;{ - y2d—y2soso + 4n? b + <Ta) y2] w}y 2 dy.
We have

1 (L. @) < (Liap, ¢) < c2(Lugp, ¢)-

This implies that L,ld/j is self-adjoint on D(L,lf) for || < 1. It follows from
general theory (cf. [4]) that eigenvalues uf; () and eigenfunctions ¢}, () are ana-
Iytic in a, and therefore the same holds for the eigenvalues A\%,(«) = (u(a))? and
eigenfunctions ¢}, (a) of L. O

Lemma 4.6. Forl =10, 0 < |a] < 1, the spectra of Ly, are discrete and simple,
consisting of sequences of eigenvalues

Mo(@) < Mp(a) < - < Npla) < -+
with normalized eirgenfunctions
9011g0<04)7 9020(05)7 o Pro(),
For each n, A}y () is increasing in «, and

Apo(a) —— 7 fora—0

1
1
©ro(a) —— 0 weakly in L*(0,00;y 2 dy).

a—0

Proof. We transform the operator Lo, by the unitary map

U: fg) = g(t) = feh)e
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into the operator
Moo = ULkoU™'  in L*(—00, 00; dt)

given by
2

d
Mk(]a = _ﬁ + % + 47T2(:I{326_t + 06262t)

with eigenvalues A}, («) and eigenfunctions Wi, () = Uyl ().
Let ¢ > 0 and let f € C3°(R), ||f]| =1 and

(- £ <

Let tg be such that
(47T2k'2€7tft0 (), fuo (t)) <€

where

fro(t) = f(t —to).
Then choose aq such that

(47T2043€2tft07 fto) <é

and hence
(MkOthoa fto) < i 4+ 3¢ for 0 < |Of| < .

It follows that
Mioa < 24+ 3e for 0 < |a| < ap.

and we have proved that

AL
k0o a—0 4

for every k =1,2,....
Consider now the subspace
Hioo = L?(—00,00;dx) © {V,,,} of L*(—o0, €;dx).
Then H},,, is invariant under My, and
Moa = min{(Mk()af, f) | [ € Hioar MioaS € Hioas |1f]| =1}
Let f € CP(R), || fIl =1, fi,(t) = f(t —to). Then
(fi0r Phoa) —— 0.

to—00

Choose tq such that
|(ft07 \Illlc0a>| <E
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and
|4m?k2e ™ || < e.

Let P}, be the orthogonal projection on Hj,,. Then
Pk10aft0 = fto - (ftm \IllleOQ)\IlllcOa

and
H (ftm \I,llcOa)lI]/lcOozH <g,

1 —e < ||Phofill <1. Let
-1
Gto = HPk10aftoH Pkl()afto'

Then
9ty € HiOaw ”gto” =1

and

(MioaGto, 9ty) = 1 Pioa ol (MyoaProaftos PoaSto)
— 1P fioll > (Mioa (fro = (i Phoa)hoa) fio = (fios Phoo) Wi )
= HPk10aftoH_2{(Mk0aftoa fio) = (fror Yhoa) (Mioafros Pioa)
~ (fror hoa) MioaWhoas fio) + [ (Fior Whoa)  (Mioa Whoq, W) |

We have
(472k2€7tft0(t)7fto(t>) < "47T2]€2€7tft0(t)” <ée.

Choose aq such that
(47T2agftoa fto) <E.

Then
(Myoafuo, fro) < 3+ 3e.

The remaining terms in the bracket are now estimated, using MkOa\II}goa =
AIICOQ\IIiOQ’ by

|(ft0> \Ijllc()a) (MkOaftm \IjllcOa) ‘ < 5)‘11an
|(ft0> \Ijllcl)a) (Mkoaqjllfow fto)‘ < 5)\/1004
|(ft07 \I[llcOa) {2 (Mkoa‘;[jllﬁOOU \IIIICOa) < 52)‘}{0&'

Adding these inequalities, we get, given 1 > 0
(Mo, gt) < (L —€) {3 +3e + Moot + )} < 3+ fore<eg

2 1
and Agy, — 7 for a — 0.
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Repeating this procedure we prove by induction on n that

n 1
/\k0a — 7

; for a— 0 for every £ > 1 and all n.

It remains to prove that the eigenfunctions W} («) of My, converge weakly to
0Oasa— 0 forevery k> 1, n>1.
We introduce the operators

2

Moo = Mioa — 1 = —op T 4 (KPe™" + a”e?)
— 2
Myo = Myoo = —a T Ar’kPe”
Mioq has the eigenvalues Mo (@) — 3 with eigenfunctions W7 (), | U7, (a)|| = 1.

M, has the purely continuous spectrum [0, 00).
Since 0 is not an eigenvalue of My, MyoC5°(R) is dense in L?(—o0, oo; dx).

Let 6 € C§°(R). Then

(U7 (), Myotl) = (xpgo( ), (Mg — 47%a? 2f)e)
= (M oUio(a),8) — dma? (V7o (), €*'6)
= (Nio(@) = 1) (Tio(a), 0) — d4m?a® (Wiy(), €*6)

— 0.
a—0

Since MyoC5° is dense, we have

(\PZO(Q)yf) —0> 0 forall f € L*(—o00,00;dx)
a—
and the last statement is proved. 0O

As in the proof of (3.7) of Lemma 3.4 we show that the functions given by (3.13)
for i = 1,2,3 and j = 1 contribute the same functions as for j = 0.

Moreover, for fixed a # 0 Lemma 3.7 is proved for the operator L, in the same
way as for a = 0.

We summarize the results of Lemmas 4.3— 4.6 in

Theorem 4. Hr can be decomposed into a direct sum of subspaces

=3B Y OH

§=1,2,3

where each space 7—[% 1s invariant under Ly, for o € R and the operators
J o .
Lka - LO&"H?c

are unitarily equivalent to L, j via the maps E s Where
; 0? 0? k?
70 .
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with the characters
[ (iy) for j=1
f@2+iy) = Qe fiy)  forj=2
e 2™ f(iy)  for j = 3.
For j =1, LY = L%,  and the spectrum is given by Lemma 3.6. In particular,
the continuous spectrum for each k is simple, equal to [—, 00).
For j = 2,3 the continuous spectrum disappears for 0 < |a| < 1 (the cusps 0 and
1 are closed by x(«)), and the eigenvalues N}, of Lio are perturbed into eigenvalues
Ao for k.1 e N.

In addition to this a new sequence of eigenvalues A}, appear for o # 0, replacing
the continuous spectrum. For each n,k € N and o — 0

Aioa — }l, ©roa — 0 weakly.
For each o the Weyl law holds for L.:
Nr(A) ~ I+ -2 = 20 for A — o0
5 Non-normal subgroups of I7 of small index

We develop the spectral theory of L. for some important non-normal subgroup of
I;.

I. We consider the three conjugate subgroups of I of index 3, I;;(2), Iy(2), I (2)
([6]) defined by

L =Ty(2)=Ty2)={gen|g=Uorg=1}, U
I=T(2) =2 ={geh|lg=Vog=I}, V=(%), =2
Ty =Ly(2) =T°Q2) ={geNi|g=Worg =T}, W=

I, =P 'IyP, Ly =P 'IyP, Iy =P 'IyP, P=0"0" PP=1I
Iy, Ly, Liws are the associated Jacobi groups.
We derive expressions for the Jacobi-invariant functions for the groups Iy, I/,
FWJ.
(1) For I, we take I,U, P? as right coset representatives.

(I) Let fro(z) € Hp., and

F(zu,0) = (S fro) (2,0,0) = D (Ty fro) (2)ep (w0), () = 97 (6).

ger‘ﬂ/l—‘?oo
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(U) Let fio € HBOO and

FY(z,u,0) = (DY fr0) (2,10,0) > (TyTy fio) ()€ (1, ),
e (%) =970 ()
= > (Tyhio) (2)epm (w,v), (5) =971(5).
e heol#) = (T fio) (=) € M.
= (%0 (Tu fr0)) (2, u,0).
(P?) Let fyo(2) € Hp,., and

Fi(z,u,0) = (S fro) (2, u,v) = Z (TyTe2 fro) (2)€pmpm (u, v),
B () =977 ()
= > (TeTezee fro) (2)epmn(u,0),
s (1) = Pr2prgmi P2 ()

m

(gn =P ?gP*cU)

— Z (TP2Tglfk‘0) (Z)@k///m///, (:,:///l/) - P_291_2 (’S)

91€ly /N
= Tp2 Z (Tglfk0)<z)€k”’m”’(u7U)’ (:LI'I'I') = gl—1 (g)
91€ly /Teo

= Tps (Zgl) (z,u,v) = (fszkUl) (z,u,v).
(2) For Iy we take I,U, P as right coset representatives.
(I) Let fro € Hp., and

E (z,u,0) = (S fro) (2, u,0) = Z (T fro) (2)€prme (u, v), (Z,) = g_l(g).

g€y /Taco

(U) Let fro € Hp,, and

F¥(z,u,v) = (Z%fko) (z,u,v)

= Y @) @), () =007 ()

geFW/Ul_‘QOOU71

= Z (Tyhio) € (1, v),

QGFW/FQOO

(7]:1,’) =g '(}), hwo(2) = (T fro) (2) € Doe.
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(P) Let fro(2) € Hp.. and

Fkvg(z7 u,v) = (E%fko) (z,u,v)

= Y @Teh)@eelun), () =g P

gel—‘W/F’FlooP_1

(gl = P_lgP c FU)

= Z (TPTg1 fk,‘O) <Z)€k’”m”’ (U’ ’U>7 (:,Ll/////) P—lgl—l (g)

9€ly /o
= fP(Eg1fk0) (z,u,v) = (pr,ﬁ)(Z,u,U).

(3) For Iy we take I, P, P? as right coset representatives.

(I) Let fro € Hp,., and

FkUl(Zv u, U) = (Zglfko) (Z, u, 1))
= 3 (Tufio) e v), (5) =97'().

gEFU/Floo

(P) Let fr € Hp,, and

F’“Uz(z’u’v) - (Engko) (z,u,v)
- Z (Tngka) (Z)ek”m” (u, U), (7];/,/,) — g*lpfl (g)

geFU/Pl_éooP71

(gl = P_lgP € Eg)

= Y @) D). (5 = P (E)

geFV/FQOO
= (TrFl) (= u.0).
(P?) Let fyo € Hp,. and

Fl(z,u,v) = (EkU3fk0) (z,u,v)
C Y ()G, () =g P

gEFU/1:)2]-—‘20013_2

(g2 = P2gP?% € Tyy)

S Y T ) ), (51) = P

926w /oo

= (T ) (2, u,0). (5.1)

Replacing U by P in the calculation of FY,(z,u,v), we get
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(P)

F(2,u,0) = (Skafro) (2,1, 0)
= Y @) @), () =0 P()

gEFﬁ/PFQOOP*1

(P7'gP = g1 € Ti)

- Z (TPTg1 fko) (2) e (U, v), (:;/’/) — P_lgfl (18)

g1 EFW/FQOO

= (pr,ﬂ/)(z,u,v). (5.2)

By (5.1) and (5.2), N
F4(z,u,0) = (TpF) (2,u,v).

By (1),
(2}9/2ka) (27 u, U) = (2‘k/1 (TUfko)) (Zv u, U)

and we obtain by (3)

Flg(z>uav> = fp(EkVI(TUka))(Zauav) = (EI[cJQ(TUka))(Z’u7 U) = FkU2(Z’u7 U)'

Definition. The subspaces Hy, , of Hr,, Hiy,, of Hry,, and Hi, , of Hy,, are given

by
1 _ v 2 _ vV 3 _ vV
Hrvk - EI{Z].HFQOO7 Hrvk - Zk2HBw7 HF\/I{: - Ek?)HFloo?
1 _ W 2 _ W 3 _ W
Hrwk‘ - Ek’lHBoo’ Hrwk - ZszI‘zow HF‘/V]{: - Ek?)HFloo?
1 U 2 U 3 U
HFUk =Y Hn. HFUk = YoM HFUk; = Y Hn.. -

Theorem 5.1. X} is unitary from Hr,, to M, ,, B}, is unitary from M, to
H%Vk,lZX3 zz umtagy from Hy, to H} .
Hi, ke Hiyno Hiyy are pairwise orthogonal and invariant under the operator

0?02 1 (02 0? 0?
[ 1 _9 2, 2 .
v/ Y (81'2 * 0y2) Yy {61:2 xaxay T4y )8y2}

Let

Lrvk — LFVJ ’H’f‘vk’ 1 = 1,273.

Then
LFVk = Lll_‘vk @ L%\/k‘

Ly, is unitarily equivalent to the operator Ly, in Hy,, via X},

1 vV _ W
LFVkEkl - EleFQOO'
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L, ;. is unitarily equivalent to the operator Ly, in Hry,, via 5},
ng“kaZ3 = EZ?)LFloo'

The continuous spectrum of Ly, is of multiplicity 2, and there are no resonances.

The point spectrum of Ly, ;. is the union of {\ 321, 1 =1,2,... and {12}y,
[=0,1,2,...

The point spectrum of L}, is the union of {\y},—,, | = 1,2,... Each \j,

n=1’
[ =1,2,... 1s a 4-dimensional eigenvalue of Ly, 1. Each \} 1+1/27 [=0,1,2,... is a
2-dimensional eigenvalue of Ly, p.
Similarly

71 3
Lryk = Ly, @ Lt s
where
1 W _ W
and

3 W _ sWr3
LFWkEk?) - Ek?)LFloc

with the same spectral properties as Iyy.

Also
LFUk = L%Uk @ L%Ukﬂ
where
Lll“UkEgl = EglLFloo
and

2 U _ v

with the same spectral properties as Ly, replacing Ty}, by T2, and T2, by T},

The operators Ly, ;, Ln,; and Ly, ; have the same eigenvalues with he same
multiplicities in agreement with the fact that they are conjugate as Jacobi groups.
Their counting function is guven asymptotically by

1
NFVJ(A) - NFUJ()\) - NFWJ ~ 3@)\2

which is the Weyl law for these groups.

Proof. This is proved, using our expressions for the invariant functions for Iy ;, Iy,
Ly s, in the same way as the analogous results on normal subgroups are proved in
section 3. ([l

II. We consider next the three conjugate groups I'g(4), ['°(4) and Ty(4) ([6]) where

L) = {9 la+b—c—d=0}
Iy(4) = P7'Ty(4)P, T°4) =P 'Iy(4)P, Ty4)=P'T°4)P.
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[o(4) is normal in Ty(2), Ty(4) normal in Ty(2), I'°(4) normal in T°(2), all of index
2, so their index in Ij is 6.

The width of Ty(4) is 1 and that of T°(4) and Ty(4) is 4.

We determine the Jacobi-invariant functions for T'g(4), T9(4), Ty(4).

As in the previous case we can calculate Jacobi-invariant functions for these three
groups. We consider I'°(4), the others are calculated along the same lines as for the
previous groups.

(1) Let T°(4) have coset representatives I, U, U? U3 P, V. For fr(z) € Hr,..
we set

(I)
Fr @ (z,u,0) = (S ™ fro) (2, u,0) = (T, fr0) (2)epm (1, 0),
gEF0(4)/D;OO
(5)=97'(5)

Fort=1,2,3 and '
fro(2) = ¢Z,l+t/4(1/)€2m(l+t/4)x

we have

(Tufro) (2) = € firo(2)

and we obtain

(U)
0 0
FIZQ (4)(Z,U, v) = (E£2(4)fko)(z,u, v)
= Y @) el ()= ()
9€T0(4) /oo
- iFlgFlO(4)(Z,U, v).
(U?)
0 0
Fi ¥ = (zu0) = —Fy Pz, 0,0).
(U?)
0 0
Fkr4 W= (z,u,v) = —z’FkFl (4)(27%?}).
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(P) For fro € Hn.,
FI:;(4)(Z, u,v) = (222(4)fk0) (z,u,v)
= Z (TgTPfk;O) (z)ek‘”m” (u, 'U),
R ()= P ()
(g1 € P 'gP € T°(4))
= > (TP Ty, fr0) (2)epmm (1, ),
I0(4)/Phise P~ , o
() = Pigit(5)

= (TPF,;OM)) (z,u,v).

(V)
Fis Oz u,0) = (S fro) (2,0, 0)
- > (TyTv fro) (2)€pmm (u, v),
gET(4)/VIin V1 (:1) _ g‘1V‘1(’g)
(V-lgV =g € T°(4))
= Z (Tv Ty, fro) (2)€gmmpm (1, v),
G1ETO(4) /VT ooV ~1 (1) = vget

= (TVF{10(4)) (z,u,v).

(2) Similarly we obtain for the group Iy(4) with coset representatives I, U, U?,
U3, P2, P2U.
(I,U, U? U?)
F,Ef(z, u, U) = (Zgﬂlfko) (Z7 u, U)
= Y (Tfe) Do), (5) =07,
geF’ﬂ/Eloo
(P?) For fio € N,
0 0
F,}; (4)(z,u, v) = (21,;5(4)ka) (z,u,v)
== Z (TgTPQ fko) (Z)ek.//m// (u, U),
gel; /P2HOOP_2 7 . .
’ (:1”) =4g 1P 2(]8)
(g1 = P?gP? € T°(4))
= Z (TP2Tgfk0) (Z)ek///m///<u, U)7
91€F0(4)/H00 " _ _
(m) = P27 (6)

= (Tp2F£10(4)) (z,u,v).
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(P?U) For fio € N,

Zg%(z7 Uu, 'U) = Z (T TPQUfk;()) (Z)@k///m/// (U, U),
Ly/P2UL o U1 P2 " -~ _ _
gely 1 (k’/”)_g 1P 2U ():g 1P 2(]8)
(U-1P-2gP2U = gy € T(4))
= Z (TP2UT92fk0) (Z)ek”’ " (u, U)

0 )/ o0 nr _
e (50) = P ()

= (fPQUFka(A‘))(Z?u’v)-

(2) For the Group I(4) we obtain in a way similar to for I(2) expressions similar
to those of T'°(4) and Ty(4),

F,flo(4)(z, u,v)
Fig®(z0,0)

FEW(z,u,0)

( Fﬁ(4)f )( 71))’ ka € HHOO
( Fﬁ(4)fk0)( V), fro € Hiw
(S fuo) (2, ,0), fro € Hr

with Fmo( (2, u V) = cZFkF3 W (z,u ,v), 1 =4,5,6.

From this expression for the I'o;(4)-, I'%(4)-, and Ty;(4)-invariant functions we
obtain with H%O(‘l)’ Hrow Hiy) defined as above, i = 1,2, 3.
Th 2 EFO(‘U ; ; 1 ZFO(4) ;

eorem 5.2. 3,7 as unatary from M, 1o Hyoyy- Xy, are unitary from Hr
tO H%O(4)7 Z = 5, 6

7—[%0(4) ks 7—[?0(4) . ’Hfio(@ . are parrwise orthogonal and invariant under the oper-
ator Loy

Let

%0(4)k == LF0(4)I€ H;Ok’ Z = 1,5,6.

Then
LFO Hk — LF0(4)k ©® LFO @ L

L11*0(4)k s unitarily equivalent to the operator Ly, in Hy,_ via 222(4);

i (4 o4
F0(4)k2k1( ) = 2 ( )LD;oo

Lipo( Dk 18 unitarily equivalent to the operator Ly, in Hp,, via ng (4),

. 0 0 )
%0(4)16221' W= Eii (4)Lr100, 1=5,6.

The continuous spectrum of Loy, s of multiplicity 3, and there are no reso-
nances.
The point spectrum of L%0<4)k is the union of the sets {\j;}°°

© l=1,2...;
{)\Z,l+1/4}$zo:1? {)\Z,l—l—l/l};.zo:l’ {)\Z,l+3/4}zo:17 [ = 07 17 27 e
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The point spectrum of LF0(4)k is the union of the sets {\p,}~, 1=1,2,...
Similarly
Lrya

19

LF

19

p D LE9 @k D L
where

Lrﬂkgrﬁ(‘l 21—;9(4 LDloo
and
sV =L, =56

with the same spectral properties as Lro(ay

A similar result holds for Lryyk, replacing L%0(4)k by L%0(4)k and Ll‘rio(4)k, L?owk
by L11“0(4)k’ L%0(4)k'

The operators T'y(4), Lry4y and Lrogy have the same eigenvalues with the same
multiplicity in agreement with the fact that they are conjugate as Jacobi groups.
Their counting function is given asymptotically by

NF0(4)J()\) = NF§(4)J()\> - NFO(4)J()\) ~ 6 —A
which is the Weyl law for these groups.

Proof. This is proved, using our expressions for the invariant functions for I'g(4),
[y(4); and T°(4); as it was proved for normal subgroups in section 3. O

Remark. The operators I'(2) and I'y(4) are conjugate in SLa(R),
['(2) = 2Ty (4)1.

Therefore the operators L) in Hry and Lrgy in Hryay, are isospectral, they have
the same eigenvalues with the same multzplzcztzes.

The operators Lr,, and Ly, are not isospectral. This follows from Theorem 3
and Theorem 5.2. However, the above conjugation is not a conjugation in the Jacob:
group, so there is no contradiction.

ITI. We consider two conjugate subgroups Iz, and Iz, of index 6, generated by 3
elliptic elements of order 3 ([5]). These groups are normal in I'? and are conjugate
by U (and by V). The group Ig, and Iz, are generated by the following elliptic
elements with their fix points indicated, where I'y, = Ulp, U -1

Ev=(07D, 3+ R=(70) 3+ig Gi=(G), §+iY
Bo( 14il BT 1+el GG, S

We have

E\F\G, = E;Fy,Gy =1, A=U?
F,=AEA™Y, G, =AFA™Y, i=1,2.
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['? is generated by E; and A, T?/Ty, = {I, A, E;}. Thus, A3 € Ig,, but A & T,
hence A* & T, i = 1,2. Also U & T, so U & T, i = 1,2. It follows that the
width of Tg, is 6, i = 1,2. Then I,U,U? U3, U* U® are right coset representatives
of T, in Ty, i = 1,2,

Theorem 5.3. Let fy(z) € Hy,.. and fori=1,2

F;Ei(z,u,v) = (ZZEifko) (z,u,v)
= Z (Tgfkﬂ) (z)ek,m,(u,v), (:1/’) = g_l (]8)

g€lp,

For i = 1,2, the operators EZEZ' are unitary from Hr, to Hry, k= EZEinﬁw, these
Hilbert spaces are invariant under the Jacobi Laplacian Ly, ; and its restrictions

Ly, b = Ly, |y,

satisfy . -
Ly, B =" Ly, .

The set of eigenvalues of Ly,  is the union of the sets
{Megrie}o s 1=0,1,2,..., i=1,23,450.
The Weyl law holds for the counting function

1
s, (A) ~ 6 7552 X% i =1,

The continuous spectrum has multiplicity 1.

Remark. The operators LFEl,k and LFE2,k are isospectral with the operator L,
associated with the normal commutator group, since this also has index 6 and width 6.
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