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ABSENCE OF EMBEDDED EIGENVALUES FOR RIEMANNIAN
LAPLACIANS

K. ITO AND E. SKIBSTED

Abstract. In this paper we study absence of embedded eigenvalues for Schrö-
dinger operators on non-compact connected Riemannian manifolds. A principal
example is given by a manifold with an end (possibly more than one) in which
geodesic coordinates are naturally defined. In this case one of our geometric
conditions is a positive lower bound of the second fundamental form of angular
submanifolds at infinity inside the end. Another condition may be viewed (at least
in a special case) as being a bound of the trace of this quantity, while similarly, a
third one as being a bound of the derivative of this trace. In addition to geometric
bounds we need conditions on the potential, a regularity property of the domain of
the Schrödinger operator and the unique continuation property. Examples include
ends endowed with asymptotic Euclidean or hyperbolic metrics studied previously
in the literature.
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1. Introduction and results

Let (M, g) be a non-compact connected Riemannian manifold of dimension d ≥ 1
(possibly incomplete), and H the Schrödinger operator on the Hilbert space H =
L2(M):

H = H0 + V ; H0 = −1
2
4 = 1

2
p∗i g

ijpj, pi = −i∂i.

We introduce four conditions under which we prove that a self-adjoint realization
of H does not have eigenvalues greater than some computable constant. For the
Euclidean case the theory boils down to absence of positive eigenvalues which is a
well studied subject, see e.g. [RS, FHH2O, JK]. Our conditions appear rather weak
and allow for application to manifolds with boundary (possibly caused by metric
or potential singularities). In particular, to our knowledge, they are weaker than
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2010). He would like to express his gratitude for financial support from FNU 160377 (2009–2011)
as well as from JSPS Wakate (B) 21740090 (2009–2012). K.I. thanks H. Kumura for valuable
discussion on this topic.
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2 K. ITO AND E. SKIBSTED

conditions used so far in the literature on the subject, cf. e.g. [Me, MZ, Do, Ku1,
Ku2]. The present work is applied in a companion paper [IS] in which scattering
theory is studied for a general class of metrics. Our conditions are also weaker than
the conditions of [IS].

The first condition we impose guarantees intuitively that (M, g) has at least one
“expanding end”.

Condition 1.1. There exists an unbounded real-valued function r ∈ C∞(M),
r(x) ≥ 1, such that uniformly in x ∈ M (i.e. all limits below are meant to be
uniform in x ∈M):

(1) The following inequality holds,

lim sup
r→∞

|dr| <∞. (1.1)

(2) There exist constants c > 0, c̃ ∈ [c/2, c) and r0 ≥ 1 such that

∇2r2 ≥ cg for r ≥ r0, (1.2)

and

lim inf
r→∞

(r∂r|dr|2 + c̃|dr|2) > 0, lim
r→∞

∂r|dr|2 = 0, (1.3)

where ∂r = ipr = ∇r = grad r denotes the gradient vector field for r, i.e.

∂rf = (∂ir)g
ij(∂jf), f ∈ C∞(M).

(3) There exists a decomposition 4r2 = ρ1 + ρ2 such that

lim
r→∞

ρ1 = 0, lim sup
r→∞

r−1|ρ2| <∞, lim sup
r→∞

|dρ2| <∞. (1.4)

Note that the subsets {x ∈ M | r(x) ≤ r̃}, r̃ ≥ 1, may not be compact (this is
similar to [Ku1, Ku2], see Subsection 2.2). In particular the function r could model
a distance function within a fixed single end of M extended to be bounded outside,
in particular bounded in other ends of M . Also note that for an exact distance
function (1.1) and (1.3) are trivially fulfilled, and in that case the above operator
∂r is identified as the geodesic radial derivative ∂r, see Subsection 2.2.

Condition 1.2. There exists a decomposition V = V1 + V2, V1 ∈ L2
loc(M), V2 ∈

C1(M) and V1, V2 real-valued, such that uniformly in x ∈M :

lim
r→∞

rV1 = 0, lim sup
r→∞

|V2| <∞, lim sup
r→∞

r∂rV2 ≤ 0. (1.5)

Note that under Condition 1.2 the subspace C∞c (M) ⊆ D(V ) and whence that H
is defined at least on C∞c (M). However under Conditions 1.1 and 1.2 this operator is
not necessarily essentially self-adjoint. Note that (M, g) is allowed to be incomplete
and that V is allowed to be unbounded. For instance (M, g) could be the interior of
a Riemannian manifold with boundary and for essentially self-adjointness we would
then need a symmetric boundary condition. Lack of essential self-adjointness could
also originate from unboundedness of V in some end. To fix a self-adjoint extension
we first choose a non-negative χ ∈ C∞(R) with

χ(r) =

{
0 for r ≤ 1,
1 for r ≥ 2,
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and then set

χν(r) = χ(r/ν), ν ≥ 1. (1.6)

We shall henceforth consider the function χν as being composed with the function
r from Condition 1.1. In this sense particularly χν ∈ C∞(M).

Condition 1.3. The operator H defined on C∞c (M) (by Condition 1.2) has a self-
adjoint extension, denoted by H again, such that for any ψ ∈ D(H) there exists a
sequence ψn ∈ C∞c (M) such that for all large ν ≥ 1

‖χν(ψ − ψn)‖+ ‖χν(Hψ −Hψn)‖ → 0 as n→∞.
Note that Condition 1.3 is fulfilled if (M, g) is complete and V is bounded. In

that case indeed H is essentially self-adjoint on C∞c (M), see Proposition 2.1 for a
more general result.

As a global condition we impose for this self-adjoint extension the unique contin-
uation property.

Condition 1.4. If φ ∈ D(H) satisfies Hφ = Eφ, E ∈ R, and φ(x) = 0 in some
open subset, then φ(x) = 0 in M .

In Section 2 we shall discuss various models satisfying Conditions 1.1–1.4. We
define a “critical” energy,

E0 = lim sup
r→∞

(
V + |dρ2|2

32(c−c̃)c̃
)
. (1.7)

Note that the smallest possible value of E0 under variation of c̃ in (1.3) is attained at
c̃ = c/2. For examples in Subsection 2.2 (for which for simplicity V = 0) we can use
this c̃ and verify that the essential spectrum σess(H0) = [E0,∞), see Remark 2.3 1).
Whence for these examples indeed E0 is critical regarding absence of eigenvalues as
stated more generally in the following theorem.

Theorem 1.5. Suppose Conditions 1.1–1.4. Then the eigenvalues of H are absent
above E0, i.e. σpp(H) ∩ (E0,∞) = ∅.

Various of our conditions are optimal for exclusion of embedded eigenvalues. It
is well known in Schrödinger operator theory that the von Neumann Wigner po-
tential, see for example [FH] or [RS, Section XIII.3], provides an example of a
positive eigenvalue for a decaying potential O(r−1), r = |x|. Whence the conclu-
sion of Theorem 1.5 is in general false if the first condition of (1.5) is relaxed as
lim supr→∞ r|V1| < ∞. An example of a Laplace-Beltrami operator having an em-
bedded eigenvalue is constructed in [Ku1]. This is for a hyperbolic metric, and the
example shows similarly that the conclusion of Theorem 1.5 in general is false if the
first condition of (1.4) is relaxed as lim supr→∞ |ρ1| < ∞. (Actually Kumura uses
the von Neumann Wigner potential in his construction.)

The proof of Theorem 1.5 follows the scheme of [FHH2O, FH, DeGé, MS] em-
ploying in particular a Mourre-type commutator estimate and exponential decay
estimates of a priori eigenstates. In our geometric setting the “Mourre commuta-
tor” can be very singular (in particular not bounded relatively to H in any usual
sense). Consequently we only have a weak (however sufficient) version of the com-
mutator estimate, see Corollary 3.2.

We use throughout the paper the standard notation 〈σ〉 = (1 + |σ|2)1/2 and (as
above) d for exterior differentiation (acting on functions on M). Note that in local
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coordinates p := −id takes the form p = (p1, . . . , pd). We shall slightly abuse
notation writing for example pψ ∈ H = L2(M) for ψ ∈ C∞c (M) even though
the correct meaning here is a section of the (complexified) cotangent bundle, i.e.
pψ ∈ Γ(T ∗M). Note at this point that ‖pψ‖ := ‖pψ‖Γ(T ∗M) = ‖ |pψ| ‖H. If A
is an operator on H and ψ ∈ D(A) we denote the expectation 〈ψ,Aψ〉 by 〈A〉ψ.
Unimportant positive constants are denoted by C, in particular C may vary from
occurrence to occurrence. The dependence on other variables is sometimes indicated
by subscripts such as Cν .

2. Discussion and examples

In this section we investigate how general our conditions are by looking at several
examples.

2.1. Global conditions. We recall some general criteria for self-adjointness and
the unique continuation property.

Proposition 2.1. Let (M, g) be a complete Riemannian manifold of dimension
d ≥ 1. Then the free Schrödinger operator H0 is essentially self-adjoint on C∞c (M).
Suppose V is real-valued, measurable, bounded outside a compact set and in addition:

V ∈ L2
loc(M) for d = 1, 2, 3, V ∈ Lploc(M) for some p > 2 if d = 4 while V ∈ Ld/2loc (M)

for d ≥ 5. Then V is relatively compact. In particular H is essentially self-adjoint
on C∞c (M).

We refer to [Ch] and [RS, Theorems X.20 and X.21]. We can generalize the class
of potentials to the Stummel class, see e.g. [DoGa].

As for the unique continuation property, Condition 1.4, there is an extensive lit-
erature although mostly for Schrödinger operator theory, see e.g. [JK]. For general
connected manifolds we refer to [Wo] and references therein, quoting here the follow-
ing sufficient conditions supplementing connectivity and the conditions in Proposi-
tion 2.1: 1) d = 2, 3, 4 and V is globally bounded, or 2) d ≥ 5. One could (of course)
add 3) d = 1.

2.2. Conditions inside an end. In the sequel we consider a connected and com-
plete (M, g) of dimension d ≥ 2 and take (for simplicity) V = 0. We shall examine
the meaning of Condition 1.1 in the case where, in addition, (M, g) has the following
explicit end structure: There exists an open subset E ⊂ M such that isometrically
the closure Ē ∼= [0,∞)× S for some (d− 1)-dimensional manifold S, and that

g = dr ⊗ dr + gαβ(r, σ) dσα ⊗ dσβ; grr = 1, grα = gαr = 0, (2.1)

where (r, σ) ∈ [0,∞)× S denotes local coordinates and the Greek indices run over
2, . . . , d. Whence actually r is globally defined in E and it is a smooth distance
function (here given as the distance to {0} × S). In particular we have |dr| = 1
which obviously implies (1.1) and (1.3). Notice here that Condition 1.1 involves
only the part of the function r at large values, so in agreement with Condition
1.1 we can cut and extend it to a smooth function on M obeying r ≥ 1. This is
tacitly understood below. To examine the remaining statements (1.2) and (1.4) of
Condition 1.1 we compute

∇2r2 = 2 dr ⊗ dr + r(∂rgαβ) dσα ⊗ dσβ, (2.2a)

4r2 = gij(∇2r2)ij = 2 + rgαβ(∂rgαβ). (2.2b)
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2.2.1. End of warped product type. If we consider the warped product case where
gαβ(r, σ) = f(r)hαβ(σ) we obtain, using (2.2a) and (2.2b), the following examples
fulfilling also (1.2) and (1.4) of Condition 1.1.

Examples 2.2.
(1) Let f = r2p with p > 0. Then (1.2) and (1.4) hold with c = min{2, 2p} and

ρ1 = 0 respectively, and the critical energy E0 = 0.
(2) Let f = exp(κrq) with κ > 0 and q ∈ (0, 1). Then (1.2) and (1.4) hold with

c = 2 and ρ1 = 0 respectively, and E0 = 0.
(3) Let f = exp(2κr) with κ > 0. Then (1.2) and (1.4) hold with c = 2 and ρ1 = 0

respectively, and E0 = κ2(d− 1)2/8.

Remarks 2.3.
1) For all of these examples it is easy to compute that the essential spectrum

σess(H) ⊇ [E0,∞). If in addition M \ E and S are compact then we have
σess(H) = [E0,∞). Whence indeed the absence of eigenvalues in (E0,∞) as
stated in Theorem 1.5 is optimal under these additional conditions for the above
examples (except possibly that the threshold energy E = E0 in a concrete situa-
tion might not be an eigenvalue neither).

2) A metric obtained by taking p = 1 in (1) (and assuming also M \ E and S
compact), and possibly perturb it, is dubbed a “scattering metric” in [Me, MZ].
As shown by Melrose absence of positive eigenvalues holds for scattering metrics.
Since it is not required in Condition 1.1 that r is an exact distance function we
may still have this condition fulfilled in perturbed situations (letting r be the
unperturbed distance function). In this spirit Donnelly [Do] studied perturba-
tions of the Euclidean metric (corresponding to p = 1 in (1)) using a certain
function of this type (i.e. not an exact distance function), and he proved ab-
sence of positive eigenvalues for such model. More generally, but roughly still
in the framework of perturbations of (1), absence of embedded eigenvalues was
obtained in [Ku2], and for hyperbolic models (roughly for perturbations of (3)) it
was done in [Ku1]. However Kumura’s results are stated in terms of an exact dis-
tance function and parts of his results involve conditions on the radial curvature.
Whence his framework is seemingly somewhat different. It turns out, however,
that his conditions imply properties that are stronger than our conditions. We
will discuss an example of this point in Corollary 2.4 and Remark 2.5 2).

3) Under the condition of warped product metrics growth rates between f = r2p

with p > 1/2 and f = exp(κrq) with κ > 0 and q ∈ (0, 1/2) define a class of
metrics for which the scattering theory [IS] applies. More generally Conditions
1.1–1.4 are weaker than the conditions used in [IS].

2.2.2. Volume growth and curvature. Here let us relate the critical energy E0 to
geometric quantities. We continue to assume (2.1) in the end E although without
warped product structure. In the coordinates (r, σ) ∈ [0,∞) × S used in (2.1) we
have

4r2 = 2 + 2r4r, 4r = ∂r ln
√

det g,

so that we can measure the volume growth in the radial direction in terms of the
function 4r. By (2.2a) the inequality (1.2), necessarily with c ≤ 2, is equivalent to

(r∂rgαβ − cgαβ)α,β ≥ 0 for r ≥ r0. (2.3)
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In particular the induced metric on the angular manifold Sr̃ = {x ∈ Ē| r = r̃} grows
as a function of r̃. By taking the trace of (2.3) assuming here and henceforth c = 2
and c̃ = 1 in (1.2) and (1.3), respectively, we obtain

r4r ≥ (d− 1) for r ≥ r0.

Consider the special case of “asymptotic volume growth rate”

4r = ρ+ + o(1
r
); ρ+ > 0. (2.4)

Then, setting ρ2 = 2 + 2rρ+ and ρ1 = 4r2 − ρ2 = o(1) in (1.4), we can write E0 in
terms of the volume growth rate

E0 = ρ2
+/8. (2.5)

Next, noting that the radial curvatures Rrad can control the second fundamental form
(by a standard comparison argument, see e.g. [IS, Remark 1.13] for a reference) we
recover a result from [Ku1] (here slightly extended).

Corollary 2.4. Suppose (M, g) is connected and complete having an end E with
metric of the form (2.1). Suppose there exists κ > 0 such that the radial curvature
Rrad satisfies

Rrad = −
(
κ2 + o(1

r
)
)
g on Sr (uniformly in x ∈ E),

and there exists r1 ≥ 0 such that

Rrad ≤ 0 on Sr̃ for all r̃ ≥ r1 and ∇2r ≥ 0 on Sr1 .

Then σpp(H0) ∩ (κ2(d− 1)2/8,∞) = ∅.
Proof. We have, cf. [Ku1, Proposition 2.2],

∇2r|Sr = (κ+ o(1
r
))(g − dr ⊗ dr), (2.6)

and thus (2.4) holds with ρ+ = κ(d − 1). Indeed we have (1.2) with c = 2, and
E0 = κ2(d− 1)2/8 by (2.5). The result follows from Theorem 1.5. �

Remarks 2.5.
1) The radial curvatures Rrad and Krad of [IS] and [Ku1], respectively, are different

objects but they contain equivalent information.
2) The inequalities (1.2) and (1.4) may be viewed as bounds on the minimal and

the mean curvatures (including the differential of the latter) of Sr, respectively,
whereas (2.6) certainly is a uniform asymptotic result for all the principal curva-
tures.

3. Mourre-type commutator

Suppose from this point Conditions 1.1–1.4. As a preliminary step in the proof of
Theorem 1.5 we show in this section a version of the so-called Mourre estimate. We
shall use the Mourre-type commutator with respect to the “conjugate operator”

A = i[H0, r
2] = 1

2
{(∂ir2)gijpj + p∗i g

ij(∂jr
2)} = rpr + (pr)∗r; pr = −i∂r.

While not necessarily being self-adjoint this operator is certainly symmetric as de-
fined on C∞c (M), and that suffices for our applications.



ABSENCE OF EIGENVALUES 7

Lemma 3.1. As a quadratic form on C∞c (M),

i[H,A] = p∗i (∇2r2 − 1
2
ρ1g)ijpj + 1

2
(ρ1H0 +H0ρ1) + iαipi − ip∗iα

i + β;

αi = 1
4
(∂iρ2) + V1(∂ir

2),

β = (4r2)V1 − 2r∂rV2.

Proof. We note the commutator formulas, valid for any φ ∈ C∞(M),

−[H0, [H0, φ]] = p∗i (∇2φ)ijpj − 1
4
(42φ), (3.1a)

p∗iφg
ijpj = φH0 +H0φ+ 1

2
(4φ). (3.1b)

As for (3.1a) we refer to [Do, Lemma 2.5] or [IS, Corollary 4.2]. The lemma follows
by first using (3.1a) with φ = r2 and then (3.1b) with φ = 1

2
ρ1. �

We introduce for σ ≥ 0

Hσ = H − σ2

2
|dr|2. (3.2)

We shall consider Hσ and as an operator defined on C∞c (M) only. We recall the
definitions of χν and E0, (1.6) and (1.7), respectively.

Corollary 3.2. Let E ∈ (E0,∞). There exist γ > 0 and C > 0 such that, if ν ≥ 1
is large, then for any σ ≥ 0, as quadratic forms on C∞c (M),

χν i[Hσ, A]χν ≥ γχ2
ν − Cχν(Hσ − E)2χν .

Proof. We shall use Lemma 3.1 and in particular the functions α and β appearing
there. Choose constants c′ ∈ (0, c̃) and γ > 0 such that for all large enough r ≥ 1

r∂r|dr|2 ≥ −2c′+ρ1
2
|dr|2 and E − V − α2

2(c−c̃)c′ ≥ γ/c′. (3.3)

Noting |4r2| ≤ Cr for large r, cf. (1.4), we have for all large r ≥ 1

∇2r2 − 1
2
ρ1g ≥ (c+ c′ − c̃)g, (3.4a)

β − ρ1V + ρ1E ≥ −γ
2
, (3.4b)

(c′ + 1
2
ρ1)2 ≤ c̃2. (3.4c)

Then by using (3.4a) and the Cauchy Schwarz inequality we obtain for all large
ν ≥ 1

χν i[Hσ, A]χν ≥ χν

{
(c′ + 1

2
ρ1)(Hσ − E) + (Hσ − E)(c′ + 1

2
ρ1)− α2

(c−c̃)

− (2c′ + ρ1)V + (2c′ + ρ1)(1
2
σ2|dr|2 + E) + β + σ2r∂r|dr|2

}
χν .

(3.5)

By using in turn (3.3), (3.4b) and (3.4c) we obtain with C := 2c̃2/γ

χν i[Hσ, A]χν ≥ χν
{

2c′E − 2c′V − α2

(c−c̃) − (c′ + 1
2
ρ1)2/C − C(Hσ − E)2 − γ

2

}
χν

≥ χν
{

2γ − γ
2
− C(Hσ − E)2 − γ

2

}
χν ,

and whence the assertion. �



8 K. ITO AND E. SKIBSTED

4. Exponential decay of eigenstates

The proof of Theorem 1.5, given in this section, depends on the following expo-
nential decay estimate which in turn will be proved in Section 5.

Proposition 4.1. Let E ∈ σpp(H) ∩ (E0,∞) and suppose φ ∈ D(H) satisfies
Hφ = Eφ. Then for any σ ≥ 0 one has eσrφ ∈ H.

To implement Condition 1.3 efficiently we need to strengthen the stated approx-
imation property under some additional conditions (fulfilled for eigenstates due to
Proposition 4.1).

Lemma 4.2. Let ψ ∈ D(H). There exists ν0 ≥ 1 such that for ν ≥ ν0 and for
any σ ≥ 0 such that eσrψ, eσrHψ ∈ H the following properties hold: The states
χνe

σrpψ, eσrpχνψ ∈ H and there exists a sequence ψn ∈ C∞c (M) (possibly depending
on σ) such that as n→∞

‖χνeσr(ψ − ψn)‖+ ‖χνeσr(pψ − pψn)‖+ ‖χνeσr(Hψ −Hψn)‖ → 0. (4.1)

Proof. Step I. Note the distributional identity

χνe
σrpψ = eσrpχνψ + ieσrψχ′νdr.

Applied to the given ψ we see that χνe
σrpψ ∈ H if and only if eσrpχνψ ∈ H.

Step II. We claim that there exists C > 0 such that, if ν ≥ 1 is large, then for any
ψ ∈ C∞c (M) and σ ≥ 0

‖χνeσr|pψ|‖2 ≤ ‖χνeσrHψ‖2 + C〈σ〉2‖χν/2eσrψ‖2. (4.2)

In fact by (3.1b)

‖χνeσr|pψ|‖2 = 2 Re 〈χνeσrψ, χνeσrHψ〉+ 1
2
〈ψ, (4χ2

νe
2σr)ψ〉 − 2〈χνeσrψ, V χνeσrψ〉

≤ ‖χνeσrHψ‖2 + C〈σ〉2‖χν/2eσrψ‖2.

Here we used Condition 1.1 and the following consequence

|4r| = 1
2r
|(4r2)− 2|dr|2| ≤ C for r = r(x) large. (4.3)

Step III. We consider the case σ = 0, and hence suppose only ψ ∈ D(H). Let
ψn ∈ C∞c (M) and large ν ≥ 1 be as in Condition 1.3. Then, regarding (4.1), it
suffices to consider the middle term. By (4.2) we have

‖χν(pψn − pψn′)‖2 ≤ C
(
‖χν(Hψn −Hψn′)‖2 + ‖χν/2(ψn − ψn′)‖2

)
.

This implies χνpψn converges strongly. Since also χνpψn converges in distributional
sense to χνpψ, we obtain that the limit χνpψ ∈ H and then in turn, by letting
n′ →∞ above, (4.1) for σ = 0.

Step IV. We let σ > 0 and suppose eσrψ, eσrHψ ∈ H. Choose ψn ∈ C∞c (M) and
large ν ≥ 1 as in Condition 1.3, again. As for the first and the third terms of (4.1),
we compute as follows: Put ψn,ν′ = χ̄ν′ψn for ν ′ ≥ 2ν and with χ̄ν′ := 1−χν′ . Then
we decompose

χνe
σr(ψ − ψn,ν′) = χ̄ν′e

σrχν(ψ − ψn) + χν′e
σrψ. (4.4)

We put

Rν′ = i[H,χν′ ] = 1
2
(χ′ν′p

r + (pr)∗χ′ν′) = χ′ν′p
r − i

2

(
χ′′ν′|dr|2 + χ′ν′4r

)
, (4.5)
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and decompose similarly

χνe
σr(Hψ −Hψn,ν′)

= χ̄ν′e
σrχν(Hψ −Hψn) + χν′e

σrHψ + ieσrRν′(ψ − ψn)− ieσrRν′ψ.
(4.6)

The norm of the right-hand side of (4.4) can be arbitrarily small by first letting ν ′

be large and then n large accordingly (using that χ̄ν′e
σr is bounded). Similarly the

norm of first three terms on the right-hand side of (4.6) can be arbitrarily small
by first letting ν ′ be large and then n large accordingly (for the third term we use
Step III, i.e. (4.1) with σ = 0). It remains to consider the last term on the right-hand
side of (4.6). We claim that

‖eσrRν′ψ‖ ≤ C/ν ′. (4.7)

To show this we use again Step III to write

‖χ′ν′eσrpψ‖2 = lim
m→∞

‖χ′ν′eσrpψm‖2.

On the other hand by the derivation of (4.2)

‖χ′ν′eσrpψm‖2 ≤ C
(
‖χ′ν′eσrHψm‖2 +

( 〈σ〉
ν′
)2‖χν/2χ̄2ν′e

σrψm‖2
)
,

and hence we conclude by taking the limit that

‖χ′ν′eσrpψ‖2 ≤
(
Cσ
ν′
)2(‖χνχ̄2ν′e

σrHψ‖2 + ‖χν/2χ̄2ν′e
σrψ‖2

)

≤
(
Cσ
ν′
)2(‖eσrHψ‖2 + ‖eσrψ‖2

)
.

(4.8)

A consequence of (4.8) is indeed (4.7), and whence in turn also the last term on the
right-hand side of (4.6) is small for ν ′ sufficiently large.

We conclude that there exists a sequence of indices (ν ′(m), n(m)) so that with
ψm := ψn(m),ν′(m) (here and henceforth slightly abusing notation)

‖χνeσr(ψ − ψm)‖+ ‖χνeσr(Hψ −Hψm)‖ → 0.

In particular, using here (4.2), the right-hand side of

‖χ2νe
σrp(ψn − ψn′)‖2 ≤ C

(
‖χ2νe

σrH(ψn − ψn′)‖2 + ‖χνeσr(ψn − ψn′)‖2
)

is small for n, n′ →∞. We can from this point mimic the last part of Step III. �
Proof of Theorem 1.5. Suppose E ∈ σpp(H)∩ (E0,∞) and let φ be any correspond-
ing eigenstate. Then, by Proposition 4.1, for any ν ≥ 1 and σ ≥ 0

φσ = φσ,ν := χνe
σ(r−4ν)φ ∈ H. (4.9)

We will choose ν ≥ 1 large in agreement with Lemma 4.2 with ψ = φ. In the
following computations we actually have to first choose an approximate sequence
for φ from C∞c (M) and then take the limits. This can be done by using Lemma 4.2
and the closedness of H, but since the verification is rather straightforward we shall
not elaborate on this point.

We compute, putting Rν = i[H0, χν ] = Re
(
χ′νp

r
)

as in (4.5),

Hφσ = Eφσ + σ2

2
|dr|2φσ − iσ(Re pr)φσ − ieσ(r−4ν)Rνφ. (4.10)

In particular indeed φσ ∈ D(H). Take inner product with φσ and compute

〈H〉φσ = Re 〈H〉φσ = 〈E + σ2

2
|dr|2〉φσ + i

2
〈[Rν , χνe

2σ(r−4ν)]〉φ.
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Whence

〈H〉φσ ≥ 〈E + σ2

2
|dr|2〉φσ − C〈σ〉‖φ‖2,

where C > 0 does not depend on ν or σ because r ≤ 2ν on suppχ′ν . On the other
hand if c′ ∈ (0, c̃) and ν ≥ 1 is large then, cf. (3.5) with σ = 0,

2c′〈H〉φσ ≤ 〈i[H,A]〉φσ − Re 〈ρ1H〉φσ + C‖φσ‖2.

We fix such c′ assuming in addition (for a later application)

lim inf
r→∞

(r∂r|dr|2 + c′|dr|2) > 0. (4.11)

We compute the first and the second terms on the right-hand side. By (4.10)
again

〈i[H,A]〉φσ
= σ2 Im 〈A|dr|2〉φσ − 2σRe 〈(Re pr)A〉φσ − 2 Re 〈Rνe

σ(r−4ν)Aχνe
σ(r−4ν)〉φ,

(4.12)

while

− Re 〈ρ1H〉φσ
= −E〈ρ1〉φσ − σ2

2
〈ρ1|dr|2〉φσ − σ Im 〈ρ1 Re pr〉φσ − Im 〈ρ1χνe

2σ(r−4ν)Rν〉φ
(4.13)

The first and the second terms of (4.12) are estimated using

Im (A|dr|2) = −r(∂r|dr|2),

−2 Re ((Re pr)A) = −(Re pr)(2r(Re pr)− i|dr|2) + h.c. ≤ (∂r|dr|2).

As for the third term of (4.12) we estimate (recall the notation χ̄ν = 1− χν)
− 2 Re 〈Rνe

σ(r−4ν)Aχνe
σ(r−4ν)〉φ

≤ ‖eσ(r−4ν)Rνφ‖2 + ‖χ̄2νAχνe
σ(r−4ν)φ‖2

≤
{
‖χ′νeσ(r−4ν)prφ‖+ 1

2
‖(χ′′ν |dr|2 + χ′ν(4r))eσ(r−4ν)φ‖

}2

+
{
‖2rχ̄2νχνe

σ(r−4ν)prφ‖
+ ‖χ̄2ν(2r|dr|2χ′ν + 2σrχν |dr|2 + 1

2
(4r2)χν)e

σ(r−4ν)φ‖
}2

≤ Cν2‖χν/2|pφ|‖2 + Cν2〈σ〉2‖φ‖2,

where we have used (4.3). By using (4.1) and (4.2) (both with σ = 0) we then
conclude

−2 Re 〈Rνe
σ(r−4ν)Aχνe

σ(r−4ν)〉φ ≤ Cν2〈σ〉2‖φ‖2.

Next, we compute the third and fourth terms of (4.13). Note that we can not
differentiate ρ1. But by the support property of χ′ν (the one used before) the fourth
term is estimated similarly to the third term of (4.12), and we obtain

− Im 〈ρ1χνe
2σ(r−4ν)Rν〉φ ≤ C〈σ〉2‖φ‖2.

We proceed for the third term of (4.13):

− Im 〈ρ1 Re pr〉φσ
= − Im 〈ρ1p

r〉φσ + 1
2
〈ρ1(4r)〉φσ

≤ − Im 〈φσ, ρ1χνe
σ(r−4ν)prφ〉+ C‖φ‖2 + Cσ〈|ρ1|〉φσ + C‖φσ‖2

≤ C
(
supχν/2|ρ1|

)
〈σ〉−1‖χνeσ(r−4ν)|pφ|‖2 + C‖φ‖2 + C〈σ〉〈|ρ1|〉φσ + C‖φσ‖2.
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We apply (4.1) and (4.2) to the first term on the right-hand side yielding

− Im 〈ρ1 Re pr〉φσ ≤ C
(
supχν/2|ρ1|

)
〈σ〉‖φσ‖2 + C〈σ〉‖φ‖2 + C‖φσ‖2.

We summarize

σ2
〈
r(∂r|dr|2) + c′|dr|2 − C

(
supχν/2|ρ1|

)〉
φσ
− C〈σ〉‖φσ‖2 ≤ Cν2〈σ〉2‖φ‖2. (4.14)

We shall apply (4.14) to a fixed ν ≥ 1 chosen so large that the quantity r(∂r|dr|2) +
c′|dr|2 − C

(
supχν/2|ρ1|

)
is greater than some positive constant on suppχν . Note

that this in turn is doable since we have assumed (4.11).
Now assume χ5νφ 6≡ 0. After division by 〈σ〉2 on both sides of (4.14) the left-hand

side grows exponentially as σ → ∞ whereas the right-hand side is bounded, and
hence we obtain a contradiction. Thus χ5νφ ≡ 0, and then by Condition 1.4 we
conclude that φ(x) = 0 in M . �

5. Auxiliary operators

In this section we give the proof of Proposition 4.1. We introduce regularized
weights

θm(r) = r(1 + r
m

)−1, m ≥ 1,

and denote the derivatives in r by θ
(k)
m (r), e.g.,

θ′m(r) = θ(1)
m (r) = (1 + r

m
)−2.

We introduce furthermore

Θm(r) = Θσ,δ
m (r) = σr + δθm(r), σ, δ ≥ 0,

and denote the derivatives by Θ
(k)
m (r) as above. Now we define some observables:

B = i[H0, r] = 1
2
(pr + (pr)∗) = pr + 1

2i
(4r),

Bm = i[H0,Θm] = 1
2

(Θ′mp
r + (pr)∗Θ′m) = Θ′mp

r + 1
2i
{(4r)Θ′m + |dr|2Θ′′m},

Rν = i[H0, χν ] = 1
2
(χ′νp

r + (pr)∗χ′ν), ν ≥ 1.

Then we have the properties:

A = 2Br − 1
i
|dr|2 = 2rB + 1

i
|dr|2 (5.1a)

Bm = BΘ′m − 1
2i
|dr|2Θ′′m = Θ′mB + 1

2i
|dr|2Θ′′m, (5.1b)

(Bm)2 = B(Θ′m)2B − 1
2
(∂r|dr|2)Θ′mΘ′′m − 1

2
|dr|4Θ′mΘ′′′m − 1

4
|dr|4(Θ′′m)2

≤ B(Θ′m)2B + Cδ(σ + δ),
(5.1c)

where the last inequality is for large r. We set for ν ′ ≥ 2ν and ψ ∈ C∞c (M)

ψm = ψm,ν,ν′ = χν,ν′e
Θmψ; χν,ν′ = χνχ̄ν′ , χ̄ν′ = 1− χν′ ,

not to be mixed up with ψn in Lemma 4.2. We recall the notation (3.2). A compu-
tation shows, cf. (4.10), that

i(Hσ − E)ψm

= iχν,ν′e
Θm(H − E)ψ +

{
Bm − 1

2i
((Θ′m)2 − σ2)|dr|2

}
ψm + eΘm(Rν −Rν′)ψ.

(5.2)
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Lemma 5.1. Let σ0 ≥ 0 be fixed.

(i) Let ε > 0. Then there exists C > 0 such that, if ν ≥ 1 is large, for any m ≥ 1,
0 ≤ δ ≤ 1 and 0 ≤ σ ≤ σ0, as quadratic forms on C∞c (M),

χν Re (ABm)χν ≥ 2χνBrΘ
′
mBχν − (ε+ Cδ)χ2

ν .

(ii) Let ε′ > 0. Then there exists C > 0 such that, if ν ≥ 1 is large, for any
ν ′ ≥ 2ν, m ≥ 1, 0 ≤ δ ≤ 1, 0 ≤ σ ≤ σ0, E ∈ R and ψ ∈ C∞c (M)

‖(Hσ − E)ψm‖2

≤ 5‖χν,ν′eΘm(H − E)ψ‖2 + ε′〈BrΘ′mB〉ψm + Cδ‖ψm‖2

+ Cν(‖χν/2ψ‖2 + ‖χν/2pψ‖2) + C(ν ′)−2(‖χν,2ν′eΘmψ‖2 + ‖χν,2ν′eΘmpψ‖2).

Proof. (i) By (5.1a) and (5.1b)

Re (ABm) = 1
2
(2Br − 1

i
|dr|2)(Θ′mB + 1

2i
|dr|2Θ′′m) + h.c.

= BrΘ′mB + 1
2i
Br|dr|2Θ′′m − 1

2i
|dr|2Θ′mB + 1

4
|dr|4Θ′′m + h.c.

= 2BrΘ′mB − 1
2

{
(∂r|dr|2)(Θ′m + rΘ′′m) + |dr|4(Θ′′m + rΘ′′′m)

}
.

Then by (1.1) and (1.3) the assertion follows.

(ii) By (5.2), (5.1c), (1.1) and (4.3)

‖(Hσ − E)ψm‖2

≤ 5‖χν,ν′eΘm(H − E)ψ‖2 + 5〈(Bm)2〉ψm + 5
4
‖((Θ′m)2 − σ2)|dr|2ψm‖2

+ 5‖eΘmRνψ‖2 + 5‖eΘmRν′ψ‖2

≤ 5‖χν,ν′eΘm(H − E)ψ‖2 + 5〈B(Θ′m)2B〉ψm + Cδ‖ψm‖2

+ Cν(‖χν/2ψ‖2 + ‖χν/2pψ‖2) + C(ν ′)−2(‖χν,2ν′eΘmψ‖2 + ‖χν,2ν′eΘmpψ‖2).

Now choose ν ≥ 1 large enough so that 5Θ′m ≤ 5(σ0 + 1) ≤ ε′r on suppχν , and we
are done. �

Proof of Proposition 4.1. We let E and φ be as in the proposition. Set

σ0 = sup {σ ≥ 0| eσrφ ∈ H},

and assume σ0 < ∞. If σ0 > 0 we choose σ ∈ [0, σ0) and a small δ > 0 such that
σ + δ > σ0. If σ0 = 0 we set σ = 0 and choose a small δ > 0. These numbers
will be determined more precisely in the following arguments. In any case we have
eσrφ ∈ H. We indicate below the dependence of constants using subscripts.

Due to Corollary 3.2, for any ψ ∈ C∞c (M)

‖ψm‖2 ≤ γ−1〈i[Hσ, A]〉ψm + C0‖(Hσ − E)ψm‖2; C0 = C/γ. (5.3)
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We estimate the right-hand side using Lemma 5.1. For the first term of (5.3) we
use (5.2) and Lemma 5.1(i) with ε = γ

3
estimating

〈i[Hσ, A]〉ψm
= − 〈i(Hσ − E)ψm, Aψm〉+ h.c.

= − 〈iχν,ν′eΘm(H − E)ψ,Aψm〉 − 〈Bmψm, Aψm〉
+ 〈 1

2i
|dr|2((Θ′m)2 − σ2)ψm, Aψm〉 − 〈eΘm(Rν −Rν′)ψ,Aψm〉+ h.c.

≤ 2‖χν,ν′eΘm(H − E)ψ‖‖Aψm‖ − 2 Re 〈ABm〉ψm − 〈(r∂r|dr|2)((Θ′m)2 − σ2)〉ψm
− 〈2r|dr|4Θ′mΘ′′m〉ψm + Cν(‖χν/2ψ‖2 + ‖χν/2pψ‖2)

+ Cm(‖
√
r/ν ′χν,2ν′e

σrψ‖2 + ‖
√
r/ν ′χν,2ν′e

σrpψ‖2)

≤ C(ν ′)2‖χν,ν′eΘm(H − E)ψ‖2 − 4〈BrΘ′mB〉ψm + (2γ
3

+ C1δ)‖ψm‖2

+ Cν(‖χν/2ψ‖2 + ‖χν/2pψ‖2) + Cm(‖
√
r/ν ′χν,2ν′e

σrψ‖2

+ ‖
√
r/ν ′χν,2ν′e

σrpψ‖2),

where we used that r/ν ′ ≤ 2
√
r/ν ′ on suppχν,2ν′ to estimate (ν ′)−2‖Aψm‖2.

On the other hand, for the second term of (5.3), let us choose ε′ = 4
γC0

in

Lemma 5.1(ii). Then (5.3) is estimated as

‖ψm‖2 ≤ C(ν ′)2‖χν,ν′eΘm(H − E)ψ‖2 +
(

2
3

+ (C1

γ
+ C2)δ

)
‖ψm‖2

+ Cν(‖χν/2ψ‖2 + ‖χν/2pψ‖2) + Cm(‖
√
r/ν ′χν,2ν′e

σrψ‖2 + ‖
√
r/ν ′χν,2ν′e

σrpψ‖2).

Now fix ν ≥ 1 sufficiently large (so that the above estimates hold), and let σ and
δ be such that 2

3
+ (C1

γ
+ C2)δ ≤ 3

4
and σ + δ > σ0. Then

1
4
‖ψm‖2 ≤ C(ν ′)2‖χν,ν′eΘm(H − E)ψ‖2 + Cν(‖χν/2ψ‖2 + ‖χν/2pψ‖2)

+ Cm(‖
√
r/ν ′χν,2ν′e

σrψ‖2 + ‖
√
r/ν ′χν,2ν′e

σrpψ‖2).
(5.4)

By Lemma 4.2 we can replace ψ of (5.4) by φ. This makes the first term on the right-
hand side disappear. Next let ν ′ →∞ invoking Lebesgue’s dominated convergence
theorem. Note that the third term disappears, and consequently we are left with
the bound

‖χνeΘmφ‖2 ≤ 4Cν(‖χν/2φ‖2 + ‖χν/2pφ‖2). (5.5)

By letting m→∞ in (5.5) invoking Lebesgue’s monotone convergence theorem we
conclude that χνe

(σ+δ)rφ ∈ H. This is a contradiction since σ + δ > σ0. �
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