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The Minimum Maximum of a Continuous Martingale

with Given Initial and Terminal Laws

D. G. Hobson and J. L. Pedersen

Let (Mt)0�t�1 be a continuous martingale with initial law M0 � �0 and terminal law
M1 � �1 and let S = sup

0�t�1Mt : In this paper we prove that there exists a greatest lower
bound with respect to stochastic ordering of probability measures, on the law of S : We give
an explicit construction of this bound. Furthermore a martingale is constructed which attains
this minimum by solving a Skorokhod embedding problem. The form of this martingale is
motivated by a simple picture. The result is applied to the robust hedging of a forward start
digital option.

1. Introduction

Let �0 and �1 be probability measures on R ; let M � M(�0; �1) be the space of all
martingales (Mt)0�t�1 with initial law �0 and terminal law �1 and let MC �MC(�0; �1)
be the subspace of M consisting of the continuous martingales. For a martingale (Mt) 2M
let S � sup 0�t�1Mt and denote the law of S by �M : In this article we are interested in
the sets P � P(�0; �1) � f �M j (Mt) 2 Mg and PC � PC(�0; �1) � f �M j (Mt) 2 MC g of
possible laws � : In particular we �nd a greatest lower bound for PC : (The problem of �nding
an upper bound has been studied elsewhere.) Here comparisons of measures are made in the
sense of stochastic domination. The fact that (Mt) is a martingale with no jumps imposes
quite restrictive conditions on the law of the maximum � :
Our motivation for studying this problem is twofold. Firstly this work extends results of

Perkins which cover the situation when the initial law is a unit mass (see Remark 2.3). Secondly
there is an application to mathematical �nance and the construction of hedging strategies for
exotic options which are robust to model misspeci�cation (see Remark 3.2).
Clearly M is empty unless the random variables corresponding to the laws �i have the

same �nite mean, and henceforth we will assume without loss of generality that this mean
is zero. Moreover a simple application of Jensen's inequality shows that a further necessary
condition for the space to be non-empty is that

(1.1)

Z
(x;1)

(u� x)�0(du) �
Z
(x;1)

(u� x)�1(du)

for all x 2 R : This condition is also suÆcient, see for example Strassen [18, Theorem 2] or
Meyer [10, Chapter XI]. It follows from the construction in Chacon and Walsh [4] that this is
also a necessary and suÆcient condition for MC to be non-empty. Henceforth we assume that
(1.1) holds.
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Consider �rst the problem of determining bounds on P(Æ0; �1) where Æ0 is the unit mass
at 0 : This problem is a special case of a problem �rst considered in Blackwell and Dubins [2]
and Dubins and Gilat [6]. Let � denote stochastic ordering on probability measures, (so that
� � � if and only if �((�1; x)) � �((�1; x)) for all x 2 R ), and let �� denote the Hardy
transform of a probability measure � : Then it follows from [2], [6] and Az�ema and Yor [1] that

(1.2) Æ0 _ �1 � � � ��1 :

Kertz and R�osler [9] have shown that the converse to (1.2) also holds: for any probability
measure � satisfying Æ0 _ �1 � � � ��1 ; there is a martingale with terminal distribution �1
whose maximum has law � : (See also Rogers [16] for a proof of these results based on excursion
theory which will motivate many of our arguments). Thus P(Æ0; �1) � f � j Æ0_�1 � � � ��1 g :
Note that the lower bound is attained by a martingale which consists of a single jump at time
1 where the jump is chosen to have law �1 :
Now consider PC(Æ0; �1) : Then the least upper bound is unchanged since there is a contin-

uous martingale whose maximum has law ��1 ; as can be seen from the example in Rogers [16].
Moreover Perkins [11] gives an expression for the greatest lower bound, which to be consistent
with future notation we shall label �#(Æ0; �1) : This lower bound will arise as a special case of
the construction we give below for general initial conditions. See Remark 2.3 for a discussion of
the Perkins construction and its relationship to the construction we give. In summary, when the
starting measure is a point mass, PC(Æ0; �1) � f � j �#(Æ0; �1) � � � ��1 g and both �#(Æ0; �1)
and ��1 are elements of PC :
We are interested in the problem with a general initial condition. As Kertz and R�osler [9,

Remark 3.3] observe,

PC(�0; �1) � P(�0; �1) � f � j�0 _ �1 � � � ��1 g :
Further Hobson [7] derives a least upper bound ��0;1 for both of the sets PC(�0; �1) and
P(�0; �1) : Since there is a continuous martingale with the correct marginal distributions whose
maximum has law ��0;1 ; the least upper bound is attained in each case.

The main result of this article is that there is a greatest lower bound �# � �#(�0; �1)
for PC ; and that this bound is attained, i.e. there exists �# 2 PC such that �# � �
for all � 2 PC : The measure �# is diÆcult to characterize but we give a simple pictorial
representation in Figure 1 below. It turns out that it is simple to show that �# is a lower
bound, but comparatively diÆcult to show that it is attained.
If the continuity restriction is dropped then it is easy to de�ne a lower bound �# for

P(�0; �1) non-constructively via

�#((�1; x]) � sup
M2M

(�M (�1; x]) :

However there is a simple example in Hobson [7] to show that for general initial measures this
lower bound for P is not attained. Again any minimal element of P corresponds to a
martingale with a single jump at time 1. These two factors explain why it is more interesting
to restrict attention to continuous martingales, a restriction that we now make.
The problem of characterising the greatest lower bound for the maximum of a martingale

constrained to have given initial and terminal laws has an application to the pricing of derivative
securities in mathematical �nance. The derivatives in question are forward start barrier options
and lookbacks. This idea has been explored in Hobson [8] and Brown, Hobson and Rogers [3].
It was this derivative pricing problem which provided the original motivation for studying
martingale inequalities of the type in this paper.
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The remainder of this paper is constructed as follows. In the next section we construct
the measure �#(�0; �1) ; and give some examples. In Section 3 we show that this measure is
stochastically dominated by every measure in PC(�0; �1) :We also briey outline the connection
between this result and a problem in the robust hedging of �nancial derivatives. Finally, in
Sections 4 and 5, we show that �# is an element of PC and hence that it is a greatest lower
bound. At �rst reading of these �nal two sections the reader is invited to think of measures
�i which are discrete as this frequently simpli�es the analysis. Note that even in this case, the
law �# is not discrete; see Example 2.

2. The main result

The main result is contained in the next theorem. Let �0 and �1 be two centered probability
measures on R satisfying the inequality (1.1) (i.e. MC(�0; �1) is then non-empty). For
i = 0; 1 we set

(2.1) ci(x) = E(Mi � x)+ =

Z
(x;1)

(u� x)�i(du)

for x 2 R and from (1.1) it follows that c1(x) � c0(x) : Hence the function

(2.2) c(x) = c1(x)� c0(x)

is non-negative. De�ne

(2.3) �(x) = �1((�1; x))� sup
y<x

c(x)� c(y)

x� y
:

Theorem 2.1. � is a left continuous distribution function. Further for any continuous mar-

tingale (Mt)0�t�1 2 MC(�0; �1) ; and for any x 2 R we have that

P(S < x) � �(x) :

Moreover there exists a continuous martingale (M#
t )0�t�1 2 MC(�0; �1) with maximum S#

for which P(S# < x) = �(x) for each x 2 R :

Corollary 2.2. De�ne the probability measure �# = �#(�0; �1) by

(2.4) �#((�1; x)) = �(x) :

Then �# is a greatest lower bound for PC(�0; �1) : In particular, for all � 2 PC(�0; �1) we

have �# � � and �# 2 PC(�0; �1) :

Before we prove the theorem in later sections we will �rst describe the construction of (M#
t )

and look at some examples to make the construction clearer. For this we need some notation.
Let Fi be the distribution function associated with �i : For x 2 R we de�ne

(2.5) (x) = sup
y<x

c(x)� c(y)

x� y
:

The two functions ci(x) are convex and hence the left-hand derivate of c(x) exists and is given
by c0�(x) = F1(x�)� F0(x�) : If the supremum in (2.5) is not attained then (x) = c0�(x) :
We de�ne the function x 7! g(x) as follows. For x 2 R ; let g(x) � x be the maximal value
where the supremum in (2.5) is attained and if the supremum is not attained g(x) = x : Note
that in the cases (x) = c0�(x) then g(x) = x : See Figure 1.
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Figure 1. The construction of (x) and g(x) involves �nding a tangent to c(�) which
crosses c(�) at x and which is supporting for c(�) to the left of x : (x) is the slope of
the tangent and g(x) is the point supporting the tangent. If there is more than one point
supporting the tangent, as in this �gure, then g(x) is the largest such point.

With the above notation we can describe the martingale (M#
t ) : On some suitable sample

space de�ne the three elements

� A random variable B0 with law �0 :
� A random variable G with law

P(G � s jB0 = r) = exp

�
�
Z
(r;s)

F c
1 (du)

F0(u�)� �(u)

� Y
u2[r;s)

�
1� �F1(u)

F0(u�)� �(u)

�+

for s > r ; where F c
1 is the non-atomic part of F1 :

� A Brownian motion (Wt)t�0 independent of B0 and G :

Then Bt = B0 +Wt is a Brownian motion with initial law �0 : Let St = max 0�r�tBr and
de�ne the stopping times

�G = inf f t > 0 : St � G g
�g = inf f t > 0 : Bt � g(St) g
� = �G ^ �g :

In later sections we will prove that B� has law �1 and S� has law � : See Figure 2 for a
picture of the stopping times. Then M#

t is a time change of Bt^� and is given by

(2.6) M#
t = B t

1�t
^�

for t � 1 : This construction involves the use of independent randomisation using the random
variable G : For comments on the necessity of such randomisation see Remark 2.3 below. We
begin however with some examples of the construction.

Example 1. Let �0 = Æ0 and �1 is the uniform distribution on [�1; 1] : Then we compute
that

c(x) =
�
1
4
(1� x)2 + x

�
1(�1;0)(x) +

1
4
(1� x)2 1[0;1)(x)

and g(x) = x � 2
p
x for 0 < x � 1 and g(x) = x elsewhere (see Figure 3). Further we

compute that �(x) =
p
x1[0;1)(x) + 1[1;1)(x) (see Figure 4). This example is also studied in

Perkins [11].
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Figure 2. Describing stopping times in (Bt; St) plane. The horizontal lines to the left of the
line y = x are representations of excursions down from the maximum of Brownian motion.

Figure 3. To the left a drawing of c(x) in Example 1. The slope of the tangent at g(x1) is
(x1) : To the right a drawing of g(x) in Example 1.

Example 2. Let �0 be the uniform measure on f�1; 1g and let �1 have atoms at �2; 0; 2
with probability p; 1� 2p; p respectively, where 1

4
< p < 1

2
: Then we compute that

c(x) =p(2 + x)1(�2;�1)(x) +
�
2p� 1

2
� (1

2
� p)x

�
1[�1;0)(x)

+
�
2p� 1

2
+ (1

2
� p)x

�
1[0;1)(x) + p(2� x)1[1;2)(x) :

If 3
8
� p < 1

2
then g(x) = �2 if �1 < x � 2 and g(x) = x elsewhere. If 1

4
< p < 3

8
then

g(x) =

8><
>:
�2 if � 1 < x � 0 and 2

8p�1
< x � 2

0 if 1 < x � 2
8p�1

x elsewhere :

The cases are illustrated in Figure 5 and 6; and Figure 7 for a pictorial representation of the
distribution functions � ; F0 and F1 :

5



Γ

Figure 4. A drawing of the distribution functions �(x) and F1(x) in Example 1.

,

Figure 5. Two drawings of c for di�erent parameter values in Example 2. The left picture
is for p = 1=3 and the right picture represents p = 4=10 :

Figure 6. Two drawings of g for di�erent parameter values in Example 2. The left picture
is for p = 1=3 and the right picture represents p = 4=10 :

6



Γ Γ

Figure 7. Two drawings of �(x) and Fi(x) (i = 0; 1 ) for di�erent parameter values in
Example 2. The left picture is for p = 1=3 and the right picture represents p = 4=10 :

Example 3. This is an example to show that the function g can get complicated with even
simple expressions for �0 and �1 : Let �0 be the uniform measure on [�2;�1] [ [1; 2]
and �1 be the uniform measure on [�3;�2] [ [�1

2
; 1
2
] [ [2; 3] : The functions c and g are

illustrated in Figure 8;  and � in Figure 9. Note that for x values in the range of [1
8
; 1]

we have that g(x) = x :

Figure 8. To the left a drawing of c(x) in and to the right a drawing of g(x) in Example 3.

Remark 2.3. Perkins [11] has studied the problem under consideration under the assumption
that �0 = Æ0 : In the Perkins construction the stopping time �G is replaced by a stopping
time of the form �h = inf f t > 0 : Bt � h(min0�u�tBu) g where h is a positive decreasing
function. Except when �1 has an atom at 0 (i.e. �0 and �1 have a simultaneous atom)
the Perkins construction gives a method of constructing a Skorokhod embedding of the law �1
using a stopping time which is adapted to the Brownian motion. The Perkins construction has
the property of minimising the law of the maximum of (Bt^� )t�0 : Furthermore, in the case
where �0 = Æ0 this construction has the remarkable additional property that it simultaneously
minimises the laws of both sup0�t�� Bt and � inf0�t�� Bt (Perkins [11, 12]).
We believe that, using the ideas of Perkins, it should be possible to construct an adapted

stopping time for the case �0 6= Æ0 provided �0 and �1 have no atoms in common. However,
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Figure 9. The left diagram represents  in Example 3. The right hand diagram shows the
distribution functions F0 , F1 , � for this example. Note that �(u) � minfF0(u�); F1(u�)g :

since in general some independent randomisation (represented by the random variable G ) is
necessary, we have not pursued this direction of research. Moreover, by considering the form of
the optimal martingale in Example 2 (with p = 3=8 ), we can see that it is not possible with
general starting measures to simultaneously minimise sup0�t�1Mt and � inf0�t�1Mt :
In his paper Perkins also makes some comments about the problem with general starting

measure [11, p220-222]. These comments are predicated on an erroneous claim (3.35) which
allows the problem to be reduced to that with M0 � Æ0 ; but which is in conict with (1.1).
This explains why we reach a di�erent conclusion.

3. The lower bound

The �rst step in the proof of Theorem 2.1 is to verify that � is indeed a lower bound.

Lemma 3.1. For any (Mt) 2 MC(�0; �1) we have that P(S � x) � 1� �(x) for x 2 R ;
where � is given in (2.3).

Proof. Let x be �xed. Suppose that y < x then we have the inequality

1fS�xg � 1fM1�xg +
(M1 � x)+

x� y
� (M0 � x)+

x� y
� (M1 � y)+

x� y
+

(M0 � y)+

x� y

+ 1fy<M0<xg
M1 �M0

x� y
+ 1fS�xg1fy<M0<xg

x�M1

x� y

(3.1)

which can be veri�ed on a case by case basis. Since (Mt) is a continuous martingale we have
equality in Doob's submartingale inequality and hence

E

�
x�M1

x� y
; S � x ; y < M0 < x

�
= 0 :

By taking expectation in (3.1) and using martingale property we have that

P(S � x) � P(M1 � x) +
c(x)� c(y)

x� y

for any y < x and the result follows. �

Remark 3.2. The above proof has a �nancial interpretation in the pricing of a forward start
digital option (see [8] and [3] for greater details). Let (Mt) denotes the price process of an
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asset and suppose for simplicity that there are zero-interest rates and no transaction costs.
From the general theory of mathematical �nance it follows that the fair price of an European
call option with strike x and maturity T is E(MT � x)+ ; where the expectation is taken
with respect to the martingale measure. Thus for pricing purpose we may assume that (Mt)
is a martingale.
To �t in with previous notation, suppose the current time is �1 and T = +1 : Suppose we

know the call prices at times zero and one for this asset. Then we can derive the laws �0 and
�1 of M0 and M1 respectively, under the pricing measure.
Consider the digital option on sale at time �1 which pays one unit if the value of the asset

is above the barrier x at any time in the period [0; 1] ; i.e. the payo� is given by

1fmax0�t�1Mt�xg :

If we assume that the price process is continuous then from the above lemma we have that

P(max0�t�1Mt � x) � P(M1 � x) + sup
y<x

[c1(x)� c0(x)]� [c1(y)� c0(y)]

x� y

where ci(x) = E(Mi � x)+ is the price of a call option with strike x and maturity i :
The inequality (3.1) can be used to motivate a hedging strategy. Initially (at time �1 ) we

�x any y < x and buy a binary option with payo� 1fM2�xg ; buy 1=(x� y) maturity 1 calls
with strike x ; sell 1=(x� y) maturity 0 calls with strike x ; sell 1=(x� y) maturity 1 calls
with strike y ; and buy 1=(x � y) maturity 0 calls with strike y : This is the static part of
the hedge and costs

�1([x;1)) +
[c1(x)� c0(x)]� [c1(y)� c0(y)]

x� y
:

For the dynamic part of the hedge we proceed as follows. If the underlying at time 0 is lower
or equal y or greater or equal x we do nothing. If the underlying at time 0 is between y
and x we buy 1=(x � y) units of the underlying and if the underlying reaches the level x
we sell 1=(x� y) units of the underlying.
From the inequality (3.1) we have that for each y this is a sub-replicative strategy. The

cost of the strategy is

�1([x;1)) +
[c1(x)� c0(x)]� [c1(y)� c0(y)]

x� y

which is a lower bound on the price of a digital option. Since y < x is arbitrary the greatest
lower bound on the price of a digital option is

(3.2) �1([x;1)) + sup
y<x

[c1(x)� c0(x)]� [c1(y)� c0(y)]

x� y
:

If the digital option is o�ered for sale below this price, then arbitrage pro�ts can be made.
Further this analysis is completely independent of the model for the behaviour of the underlying
asset. The only assumption that has been made is that the price process is continuous.
Of course the digital option may trade for a price above the bound in (3.2). However the

result of Theorem 2.1 is that if the ask price is above the bound (3.2) then it is not possible to
create riskless pro�ts unless further assumptions about the dynamics of the price process are
made (for instance, that the price process is geometric Brownian motion).
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4. Some preliminary lemmas

In this section we state some technical results which will be required in the sequel. Some of the
proofs are relegated to an appendix, although we try to explain intuitively why they must be
true.
Recall the de�nitions of � ;  and g:

�(x) = �1((�1; x))� (x)

(4.1) (x) = sup
y<x

c(x)� c(y)

x� y

and g(x) is the value of y where the supremum in (4.1) is attained. If the supremum is not
attained then we set g(x) = x : If the supremum is attained at more than one value of y then
we choose the largest (or more precisely the supremum) of the candidate values.

Lemma 4.1. The function x 7! (x) is positive, left-continuous and has no downward jumps.

Proof. This is a standard piece of analysis given the fact that the left derivative of c exists,
is bounded, and indeed equals F1(x�)�F0(x�) : That it must be true is best seen by drawing
a picture, and recalling the intuition that  represents the gradient of a supporting tangent.
See Figure 1. �

Now we prove one of the statements in Theorem 2.1, namely that the candidate law � is
indeed (a left-continuous version of) a distribution function.

Proposition 4.2. x 7! �(x) is a left-continuous distribution function, i.e. � is increasing,

left-continuous and satis�es �(�1) = 1 � �(+1) = 0 : Further, �(x) � F0(x�) ^ F1(x�)
and ��(x) � �F1(x) :

Proof. From Lemma 4.1 and the representation �(x) = F1(x�)� (x) it follows that � is
left-continuous and ��(x) � �F1(x) : Note further that (x) � 0 _ (F1(x�)� F0(x�)) and
hence �(x) � F0(x�)^F1(x�) : It is clear that (�1) = 0 so to complete the proof we only
need to verify that � is increasing.
By (2.1) and (2.2) we have the following expression for � ;

(4.2) �(x) = F0(x�)� sup
y<x

Z
(y;x)

u� y

x� y
(�0(du)� �1(du)) :

Fix y > x : With the above observations we have the following:
Case 1: (y) = c0�(y) : Then �(y) = F0(y�) � F0(x�) � �(x) :
Case 2: (y) > c0�(y) and g(y) � x : Then from (4.2)

�(y) = F0(y�)�
Z
(g(y);y)

u� g(y)

y � g(y)
�0(du) +

Z
(g(y);y)

u� g(y)

y � g(y)
�1(du)

� F0(y�)�
Z
(g(y);x)

u� g(y)

y � g(y)

�
�0(du)� �1(du)

��
Z
[x;y)

�0(du)

= F0(x�)�
Z
(g(y);x)

u� g(y)

y � g(y)
(�0(du)� �1(du))

� F0(x�)� sup
z<x

Z
(z;x)

u� z

x� z
(�0(du)� �1(du)) = �(x) :
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Case 3: (y) > c0�(y) and x < g(y) : From the �rst line in the previous case

�(y) � F0(y�)�
Z
(g(y);y)

u� g(y)

y � g(y)
�0(du)

� F0(y�)�
Z
(g(y);y)

�0(du)

= F0(g(y)) � F0(x�) � �(x) :

Hence � is increasing. �

The conclusion is that �# is a probability measure which, by Lemma 3.1 is a lower bound
for PC : We summarise this in a proposition.

Proposition 4.3. Let (Mt)0�t�1 be a continuous martingale with initial law �0 and terminal

law �1 : Let � be the law of the maximum process S : Then �# � � ; i.e. for all � 2
PC(�0; �1) we have that �# � � :

It remains to show that �# 2 PC(�0; �1) : This is the subject of the next section. For the
remainder of this section we state further lemmas, beginning with one on the properties of g :

Lemma 4.4. The function x 7! g(x) has the following properties.

(i) If z � x ; then either g(z) � g(x) or g(z) � x :
(ii) If g(x) < x ; then c0�(g(x)) � (x) � c0+(g(x)) :
(iii) If g(x) = x then F0(x�) = �(x) :

Proof. These statements are best understood using a picture; recall Figure 1. (ii) follows from
interpretation of  as the gradient of the tangent to c at g(x) ; and (iii) is true by l'Hôpital's
rule. �

It follows from the lemma that the typical behaviour of g is that either g(x) = x ; or
g(x) < x and g is decreasing. In fact if g increases then it must increase to the diagonal.

Lemma 4.5.

(i) If xn # x; with g(xn) � x then �(x+) = F0(x) :
(ii) If g(x) < x over an interval (y; z) ; and if g(z�) � limu"z g(u) ; then g(z) = g(z�) :
Proof. (i): By Lemma 4.4(ii) we have c0�(xn) � (xn) � supy2[x;xn] c

0
+(y) _ c0�(xn) and so

(xn)! c0+(x) = F1(x)� F0(x) :
(ii): g is decreasing over the interval (y; z) and so g(z�) exists. Further, either g(z) = z
or g(z) � g(z�) ; and

(z) = (z�) = lim
x"z

c(x)� c(g(x))

x� g(x)
=

c(z)� c(g(z�))
z � g(z�) :

Thus g(z�) attains the supremum in (4.1) and by maximality g(z) = g(z�) : �

We set A+ = fx 2 R j�(x+) = F0(x) g ; A� = fx 2 R j�(x) = F0(x�) g and let
A = A+ [ A� : A will play a special role in the next section where we show that for the
optimal martingale, if M0 < x 2 A then necessarily S � x also.

Lemma 4.6. If x =2 A+ then  is continuous at x and decreasing to the right of x : Hence
��(x) = �F1(x) :

11



Proof. If x =2 A+ then by the previous lemma for all y in some interval (x; x+ Æ) we have
g(y) < x < y :
Since x =2 A+ ; we must have c0+(x) < (x) ; and for y in some smaller interval (x; x+ Æ0)

we have c(y) < c(x) + (y � x)(x) : Then

(y) � c(x) + (y � x) (x)� c(g(y))

y � g(y)

=
c(x)� c(g(y))

x� g(y)

x� g(y)

y � g(y)
+

y � x

y � g(y)
(x)

� x� g(y)

y � g(y)
(x) +

y � x

y � g(y)
(x) = (x) :

Thus  is decreasing to the right of x :
Right continuity, and hence continuity will follow if limy#x (y) � (x) : Suppose �rst that

g(x+) < x : Then

(y) � c(y)� c(g(x))

y � g(x)
! (x) :

Conversely, if g(x) = x then for Æ > 0

(y) � c(y)� c(x� Æ)

y � (x� Æ)
! c(x)� c(x� Æ)

Æ
:

As Æ # 0 we recover (x+) � c0�(x) = (x) : �

Remark 4.7. If x =2 A� then it is easy to show that  is decreasing to the left of x :

Lemma 4.8.

(i) If I is an open interval disjoint from A thenZ
I

du

u� g(u)
= �

Z
I

d(u)

F0(u�)� �(u)
:

(ii) Further if g(x) < x then  satis�es

(x) =

Z
fu>x ; g(u)<g(x)g

F0(u�)� �(u)

u� g(u)
du :

Intuition.  is decreasing, and so d exists. If F1 and F0 are continuous random
variables, so that c is di�erentiable everywhere, and if g is di�erentiable on I then  is
also di�erentiable and the result follows by di�erentiation of

(v) = (c(v)� c(g(v))=(v � g(v)) :

If we consider the di�erential version of the �rst expression, and multiply both sides by
F0(y�) � �(y) then the second expression will follow if we integrate over suitable intervals.
For full proofs see the appendix. �

We close this section with a couple of lemmas concerning distribution functions, the proofs
of which are in the appendix. We denote the distribution function of a measure � by F� ;
the atoms by �F� and the non-atomic part of the distribution by F c

� :

12



Lemma 4.9. Let �; � be two measures on R satisfying � � � : Let J(x) := F�(x�) �
F�(x�) : If F� and F� have no simultaneous jumps on the interval [u; y) and if J is

positive over this interval, then

1

J(y)
exp

�
�
Z y

u

F c
� (dv)

J(v)

� Y
v2[u;y)

�
1� �F�(v)

J(v)

�

=
1

J(u)
exp

�
�
Z y

u

F c
�(dv)

J(v)

�� Y
v2[u;y)

�
1 +

�F�(v)

J(v)

���1

:

Lemma 4.10. Let �; � be as above. Fix y 2 R ; and de�ne z# = supv<yfv : J(v) = 0 or

J(v+) = 0g : Suppose z# < y : ThenZ
[z#;y)

F�(du)

J(u)
exp

�
�
Z y

u

F c
�(dv)

J(v)

� Y
v2[u;y)

�
1 +

�F�(v)

J(v)

��1
= 1

5. The minimum maximum is attained

In this section we construct a martingale (M#
t ) which is an element of MC(�0; �1) and has

the property that it's maximum S has the law �# : Thus, not only is �# a lower bound for
PC(�0; �1) but also �# 2 PC(�0; �1) :

The key idea in the construction of (M#
t ) is to exhibit the martingale as the solution of

a Skorokhod embedding problem (see [7] and [16]). Let (Bt)t�0 be a Brownian motion with
initial law �0 : The problem is to �nd a stopping time � satisfying B� has the law �1 and
sup 0�t�� Bt has the law �# : Then we can de�ne (M#

t ) as a time change of (Bt) by

(5.1) M#
t = B t

1�t
^� :

(M#
t ) is a true martingale and not just a local martingale provided that (Bt^� )t�0 is uniform

integrable.
Before we outline the construction we wish to make one simplifying observation. If �0 and

�1 both contain an atom of size at least m at some point x ; then those atoms will cancel in
the de�nition of c and consequently we can consider the measures �i�mÆx without changing
the properties of  or g : Hence, without loss of generality, we can, and shall, assume that
the measures �i share no atoms in common. If this assumption fails, and both distributions
have an atom at x ; then the construction below can be modi�ed by allowing the martingale
(Mt) to remain constant at x over [0; 1] on an appropriate part of the sample space.
Recall the de�nition of g from earlier sections and that in Section 2 we de�ned a Brownian

motion (Bt) with initial law �0 and a random variable G which depended on (Bt) only
through the initial value B0:

(5.2) P(G � s jB0 = r) = exp

�
�
Z
(r;s)

F c
1 (du)

F0(u�)� �(u)

� Y
u2[r;s)

�
1� �F1(u)

F0(u�)� �(u)

�+

:

Let St = max 0�r�tBr and de�ne the stopping times

�G = inf f t > 0 : St � G g and �g = inf f t > 0 : Bt � g(St) g :
Set � = �G ^ �g :
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We have to prove two identities in law, namely that B� � �1 and S� � �# : We consider
the second identity �rst, but we begin with a useful lemma. Recall the de�nitions of the sets
A+; A� and A before Lemma 4.6.

Lemma 5.1.

(i) Suppose x 2 A� : If B0 < x then S� < x :
(ii) Suppose x 2 A+ : If B0 � x then S� � x :

Proof. Suppose x 2 A ; B0 = r < x and let �z be the �rst hitting time by (Bt) of level
z > r i.e. �z = inf f t > 0 : Bt = z g :
If there exists z 2 (r; x) with g(z) = z then � � �g � �z and S� � z < x :
Otherwise g(z) < z on the interval (r; x) : Hence g is decreasing on this interval, and by

Lemma 4.4 g(x) < x :
If x 2 A� we show

(5.3)

Z
(r;x)

F c
1 (du)

F0(u�)� �(u)
�
X

u2[r;x)

log

�
1� �F1(u)

F0(u�)� �(u)

�+

=1

so that P(G � x jB0 = r) = 0 and �G < �x ; almost surely. We prove this is the case where
F0 and F1 have no atoms, but the general case is very similar and just involves additional
terms written as sums as well as integrals.
By considering

�1 =

Z
(� ; x)

d[ln(F0(u)� �(u))] =

Z
(� ; x)

dF0(u)

F0(u�)� �(u)
�
Z
(� ; x)

d�(u)

F0(u�)� �(u)

we deduce that this �nal integral must be in�nite. AlsoZ
(� ; x)

du

u� g(u)
= �

Z
(� ; x)

(du)

F0(u�)� �(u)

is �nite so thatZ
(� ; x)

dF1(u)

F0(u�)� �(u)
=

Z
(� ; x)

d�(u)

F0(u�)� �(u)
+

Z
(� ; x)

(du)

F0(u�)� �(u)
=1 :

In the remaining case x 2 A n A� : Then 0 < F0(x�)� �(x) � F0(x)� �(x+) + ��(x) �
�F1(x) so that P(G > xjB0 = r) = 0 and S� � x (almost surely).
Finally suppose x 2 A+ : If �F1(x) > 0 then the argument in the preceding paragraph

still holds and S� � x : Otherwise F1 is continuous at x and then ��(x) = 0 so that
F0(x�) � �(x) = �(x+) = F0(x) : In particular �F0(x) = P(B0 = x) = 0 : �

Lemma 5.2. Suppose the open interval (u; y) is disjoint from A : Then

P(S�g � y jB0 = u) = exp

�
�
Z
(u;y)

dv

v � g(v)

�

Proof. For a Brownian motion the rate of excursions below the maximum (at s ) which get
down to g(s) is given by (s� g(s))�1 : See Rogers [15] or Revuz and Yor [13]. �

Proposition 5.3. We have that S� � �# :

Proof. For y 2 A we have P(S� < y) = P(B0 < y) ; or P(S� � y) = P(B0 � y) :
Otherwise, consider y =2 A and de�ne z# = z#(y) = supz<yfz 2 Ag : If z# = y then by

left continuity P(S� < y) = P(B0 < y) : So suppose z#(y) < y : Then

14



P(S� � y) =

Z
R

P(S� � y jB0 = u)�0(du)

= P(B0 � y) +

Z
[z#;y)

P(S�g � y jB0 = u)P(G � y jB0 = u)�0(du)

= P(B0 � y) +

Z
[z#;y)

�0(du) exp

�
�
Z
(u;y)

dv

v � g(v)

�

� exp

�
�
Z
(u;y)

F c
1 (dv)

F0(v�)� �(v)

� Y
v2[u;y)

�
1� �F1(v)

F0(v�)� �(v)

�+

= P(B0 � y) +

Z
[z#;y)

�0(du) exp

�
�
Z
(u;y)

�c(dv)

F0(v�)� �(v)

�

�
Y

v2[u;y)

�
1� ��(v)

F0(v�)� �(v)

�

where in the last equality we have used Lemma 4.8(i), �c = F c
1 � c and �F1 = �� on Ac :

If we now apply Lemma 4.9 with F�(u) = �(u+) and F�(u) = F0(u) then this becomes

P(S� � y) = P(B0 � y) + (F0(y�)� �(y))

�
Z
[z#;y)

�0(du)

F0(u�)� �(u�) exp

�
�
Z
(u;y)

F c
0 (dv)

F0(v�)� �(v)

�

�
Y

v2[u;y)

�
1 +

�F0(v)

F0(v�)� �(v)

��1
:

Finally, applying Lemma 4.10, now with � = �0 and � = � we get that P(S� � y) =
P(B0 � y) + (F0(y�)� �(y)) = 1� �(y) and the result follows. �

Proposition 5.4. For the above construction we have that B� � �1 :

Proof. From the construction we have that if B� < S� ; then B� = g(S� ) < S� : This happens
if the Brownian motion has an excursion down below the maximum (at s ) which reaches g(s) :
Results from excursion theory (recall Lemma 5.2) give that this happens at rate (s� g(s))�1 :
Then

P(B� < y) = P(S� < y) +P(S� � y ; B� < y)

= �(y) +

Z
fu�y ; g(u)<yg

P(B0 < u; S� � u)
du

u� g(u)

= �(y) +

Z
fu�y ; g(u)<yg

F0(u�)� �(u)

u� g(u)
du

= �(y)� (y) = F1(y�)
this last line following from Lemma 4.8(ii). �

For (M#
t ) from (2.6) we have as a corollary of the above proposition the main result of the

paper.
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Theorem 5.5. (M#
t )0�t�1 2MC(�0; �1) and for any � 2 PC(�0; �1) stochastically dominates

�# :

Proof. From Lemma 2.3 in [16] it follows that (B(t=(1�t))^�)t�0 is uniform integrable. Hence

(M#
t ) is a martingale. �

6. Appendix

Proof. (Lemma 4.1). Since limy#�1 c(y) = 0 we have that  is positive so we begin
by showing that x 7! (x) is left continuous. Let xn " x ; then we wish to verify that
lim supxn"x (xn) � (x) � lim infxn"x (xn) :
Consider �rst the second inequality. If (x) = F1(x�)�F0(x�) then, since more generally

(y) � c0�(y) = F1(y�)� F0(y�) ; we have that
(xn) � F1(xn�)� F0(xn�)! F1(x�)� F0(x�) :

Conversely if (x) > F1(x�)� F0(x�) then g(x) < x and for xn > g(x) we have that

(xn) � c(xn)� c(g(x))

xn � g(x)
! c(x)� c(g(x))

x� g(x)
= (x) :

Hence the inequality lim infxn"x (xn) � (x) is proved.
Consider now the �rst inequality, let 0 < " < 1 be given. Choose 0 < Æ < 1 such that

F1(x�) � F1(x � Æ) < " and F0(x�) � F0(x � Æ) < " : By the identity c0�(y) � c0�(x) =
(F0(x�)� F0(y�))� (F1(x�)� F1(y�)) we see that jc0�(y)� c0�(x)j < " for y 2 (x� Æ; x) :
Note that jc0�(x)j � 1 ; and hence 0 � (x)�c0�(x) � 2 : Choose � < "Æ=5 and �x y > x�� :
If g(y) > x� Æ then

(y) � sup
z2(x�Æ;y)

c0+(z) � F1(y)� F0(x� Æ)

� (F1(x�)� F0(x�)) + (F0(x�)� F0(x� Æ)) � (x) + " :

Conversely if g(y) � x� Æ then, since

c(x) = c(y) +

Z x

y

c0�(z) dz � c(y) +

Z x

y

(c0�(x)� ") dz = c(y) + (x� y)(c0�(x)� ")

we have that

(y) =
c(y)� c(g(y))

y � g(y)
� c(x)� c(g(y))� (x� y)(c0�(x)� ")

y � g(y)

� (x)(x� g(y))� (x� y)c0�(x) + (x� y)"

y � g(y)

= (x) + (x� y)
(x)� c0�(x) + "

y � g(y)

� (x) + �
3 + "

Æ � �
� (x) + "

since 4�=(Æ � Æ=5) � 5�=Æ : Hence in both cases we have the inequality lim supxn"x (xn) �
(x) ; and  is left continuous.
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It remains to show that  has no downward jumps. Recall that  is left-continuous, so we
are interested in. If g(x) < x and " > 0 then

(x+ ") � sup
y<x

c(x+ ")� c(y)

x+ "� y
� c(x+ ")� c(g(x))

x+ "� g(x)
:

Letting " # 0 ; we obtain (x+) � (x) :
If g(x) = x and �x Æ > 0 then

(x+ ") � c(x+ ")� c(x� Æ)

"+ Æ
:

Letting " # 0 ; we see that
(x+) � c(x)� c(x� Æ)

Æ

for all Æ : Hence by taking supremum over Æ we have that

(x+) � sup
Æ>0

c(x)� c(x� Æ)

Æ
= (x) :

The proof is complete. �

Proof. (Lemma 4.8). (i): On I we must have v < g(v) and �(v) < F0(v�) : Further  is
decreasing so that (dv) must exist. We prove that Lebesgue almost surely,  is di�erentiable
on I with derivative

(dv)

dv
= � F0(v�)� �(v)

v � g(v)
:

Suppose v is such that F0 , F1 , � and the decreasing function g are all continuous at v :
Then, for v < y 2 I

(y)� (v) � c(y)� c(g(v))

y � g(v)
� c(v)� c(g(v))

v � g(v)

� c(v)� c(g(v)) + (y � v)(F1(y)� F0(y))

v � g(v)

�
1� y � v

y � g(v)

�
� c(v)� c(g(v))

v � g(v)

and so

lim inf
y#v

(y)� (v)

y � v
� c0+(v)� (v)

v � g(v)
=

�(v)� F0(v�)
v � g(v)

:

We can obtain the reverse inequality by considering

(y)� (v) � c(y)� c(g(y))

y � g(y)
� c(v)� c(g(y))

v � g(y)

and the left derivative follows by similar arguments.
(ii): Fix x : Let D(x) = f y > x j g(y) � g(x) g : Then  restricted to D is easily seen

to be strictly decreasing and onto [0; (x)) and hence has a well de�ned inverse qx(�) : Let
px(�) be given by px(u) = g(qx(u)) : Then

px(u) � g(x) < x < qx(u)

and (qx(u)) = u : See Figure 10.
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x qx(u)px(u)
� �

Figure 10. D(x) is the set f y > x j g(y) � g(x) g so that the interval (�; �] is disjoint from
D : The gradient of the line joining (px(u); c(px(u))) and (qx(u); c(qx(u))) is u :

Then Z
fu>x ; g(u)<g(x)g

F0(u�)� �(u)

u� g(u)
du =

Z
D(x)

d(u) =

Z
fu j qx(u)>x g

d(qx(u))

=

Z (x)

0

du = (x) :

�

Proof. (Lemma 4.9). Denote Jc(x) = F c
�(x)� F c

� (x) : Then we have that

d[log J(x)] =
dJc(x)

J(x)
+ log

J(x+)

J(x)
=

dJc(x)

J(x)
+ log

�
1 +

�F�(x)

J(x)

�
+ log

�
1� �F�(x)

J(x)

�
:

If we integrate over the set [y; x) we obtain that

log
J(x)

J(y)
=

Z
(y;x)

F c
�(du)

J(u)
�
Z
(y;x)

F c
� (du)

J(u)
+
X

u2[y;x)

log

�
1 +

�F�(u)

J(u)

�
+
X

u2[y;x)

log

�
1� �F�(x)

J(x)

�

and the result follows easily. �

Proof. (Lemma 4.10). De�ne the function

K(x) � Ky(x) = �
Z
[x;y)

F c
�(dv)

F�(v�)� F�(v�) �
X

v2[x;y)

log

�
1 +

�F�(v)

F�(v�)� F�(v�)
�
:

Then we have K(y) = 0 and

K(x) � �
Z y

x

d(logfF�(v�)� F�(v�)g)
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where the integral on the right hand side can be taken over either [x; y) or (x; y) : It follows
that K(z#) = �1 : Then we have

d[eK(u)] = eK(u) F c
�(du)

F�(u�)� F�(u�) + eK(u)
�
eK(u+)�K(u) � 1

�

= eK(u) F c
�(du)

F�(u�)� F�(u�) + eK(u) �F�(u)

F�(u�)� F�(u�) :

Integrate over the set [z#; y) we get that

1 = eK(y) � eK(z#) =

Z
[z#;y)

F�(du)

F�(u�)� F�(u�) e
K(u) :

�
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