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Abstract In this paper we give necessary and suÆcient conditions for iden-
ti�ability of parameters in animal and sire models of Gaussian traits, for binary
and ordered categorical threshold characters, for traits following a Poisson mixed
model and in frailty models for survival data. For survival data we consider
Weibull and Cox log normal frailty models with time-independent covariates.
Furthermore, we consider Cox frailty models with time-independent covariates,
extended with either an extra random e�ect, time-dependent covariates with
associated �xed e�ects, or time-dependent covariates with associated random
e�ects. We show that sire models are consistent with the additive genetic in-
�nitesimal model if and only if a normally distributed error term is included and
the sire variance is less than one third of the variance of the normally distributed
error term.
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log normal frailty model.

1



1 Introduction

The purpose of animal breeding is to select the best animals to breed from.
Animals are selected based on their estimated (predicted) breeding potential
with the objective of increasing the mean genetic value - of the trait being
selected for - in future generations. For normally distributed traits (e.g. milk,
fat or protein yield in cattle) then the theory is well established. This is not the
case for some other traits, for example traits following Poisson mixed models
(e.g. litter size in pigs) or survival traits (e.g. longevity, that is length of life,
measured from birth (or another starting date) until culling). A lot of countries
are selecting for, or are going to select bulls based on their breeding potential
for longevity, based on a so-called 'sire' models for survival data. However,
in this paper we prove that these models are inconsistent with (postulated)
assumptions of the additive genetic in�nitesimal model. Furthermore we de�ne
sire models for survival data, which are consistent with the additive genetic
in�nitesimal model.

The additive genetic value of an animal is a measure of the breeding po-
tential of the animal, and the name 'animal model' refer to models including
additive genetic values for all animals in the data. If data consist of groups
of halfsibs, where a group is determined by a common sire (father), then it is
computationally much easier to use a sire model equivalent to the animal model.
Sometimes a sire model is used in order to handle larger data sets (often millions
of records), at the expense of ignoring part of the relationships between animals
(part of the correlations between random e�ects associated with additive genetic
values). In the (simplest) sire model it is implicitly assumed that all o�spring
have di�erent dams (mothers), and it is assumed that all of the sires and dams
are unrelated (additive genetic values of all the sires and dams are mutually
independent).

The log normal frailty model where the logarithm of individual frailties are
normally distributed is attractive from a genetic point of view. This is because,
by assumptions of the additive genetic in�nitesimal model, then it can be argued
by the central limit theorem that the random e�ects associated with additive
genetic values of animals follow a multivariate normal distribution, with common
mean and variance covariance matrix A�2a, where A is a known matrix. In
the (simplest) animal mixed model (Korsgaard et al., 1998) for survival data,
it is assumed that the hazard function of animal i, conditional on log frailty,
ai + ei, is given by �i (tjai + ei) = �0 (t) exp fxi� + ai + eig, where xi is the
design vector associated with �xed e�ects of animal i, (ai)i=1;:::;n is a vector
of random additive genetic values and (ei)i=1;:::;n is a vector of independent
and normally distributed residuals in log frailty (independent of the vector of
additive genetic values). Ducrocq and Casella (1996) considered Weibull animal
frailty models for survival data without the residual term in log frailty, the same
did Gauderman and Thomas (1994), the latter using the name polygenic e�ect
for the additive genetic value.

In the (simplest) sire frailty models for survival data described in this paper,
it is assumed that the hazard function of animal i, conditional on log frailty,
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sg(i) + ei, is given by �i
�
tjsg(i) + ei

�
= �0 (t) exp

�
xi� + sg(i) + ei

	
, where g (i)

is the sire of animal i. In animal breeding a sire often has large progeny groups
and sg(i) is a random e�ect common to all progeny of that sire, in the simplest
sire models then the random vector of sire e�ects, s, is normally distributed with
s � NG

�
0; IG�

2
s

�
. The initial model for routine breeding value evaluation for

longevity of dairy cows implemented in France was a (complicated) Weibull 'sire'
frailty model (Ducrocq and S�olkner, 1998) without the error term in log frailty -
this model is inconsistent with assumptions of the additive genetic in�nitesimal
model.

In Gaussian linear mixed models it is well known that for the sire model to
be consistent with assumptions of the additive genetic in�nitesimal model, then
the sire variance, �2s , must be less than one third of the variance of the normally
distributed error term. Among geneticists/animal breeders it has been discussed
whether it makes sense to include an error term in log frailty. This is indicated
by di�erent papers concerning the de�nition of heritability of survival traits (e.g.
Ducrocq (1999), Korsgaard et al. (1999, 2000) and Yazdi et al. (2000)). In this
paper we prove that it makes sense to include the error term in log frailty
- the error variance can be identi�ed - and we prove that the error term is
absolutely necessary in sire models for these to be consistent with assumptions
of the additive genetic in�nitesimal model. In this paper we are concerned
in general - for models frequently used in animal breeding - with conditions
under which sire models are consistent with assumptions of the additive genetic
in�nitesimal model. All of the models we consider are mixed models, where the
joint distribution of mixing distributions (or the joint distribution of log mixing
distributions) is multivariate normal, namely models for threshold characters,
Poisson mixed models and survival models. First, and for each of the models,
we give necessary and suÆcient conditions for identi�ability of parameters in
animal and sire models.

The structure of the paper is as follows: In section 2, a summary is given
of the genetic theory required in this paper. Next follows, in section 3, a sum-
mary of results on identi�ability of parameters in Gaussian animal and sire
models; and for parameterised (parameters identi�able) sire models the con-
dition is given for existence of an equivalent animal model. In section 4, 5
and 6 we consider identi�ability of parameters in animal and sire models of
threshold characters, traits following Poisson mixed models and for survival
traits, respectively. In the same series of models we give the condition under
which the sire model is consistent with the animal model (i.e. with assump-
tions of the additive genetic in�nitesimal model). For threshold characters we
consider separately binary threshold characters and ordered categorical traits
with three or more categories. For survival models we consider Weibull and
Cox log normal frailty models. For Weibull frailty models only models with
time-independent covariates are considered. For Cox frailty models we consider
models with i) time-independent covariates, ii) an extra random e�ect, iii) time-
dependent (piecewise constant) covariates with associated �xed e�ects and iv)
time-dependent (piecewise constant) covariates with associated random e�ects.
In ii), iii) and iv) time-independent covariates may also be included. The paper
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ends with a discussion and conclusion.

2 Genetic theory and notation

In this paper, we will work under the assumptions of a genetic model of i)
a large (strictly in�nite) random mating population in Hardy Weinberg and
linkage equilibrium; i.e. no selection, migration, mutation or inbreeding; and ii)
traits of concern are controlled by a large (strictly in�nite) number of additive
loci, i.e. changes of gene frequency is of no concern and under the assumption of
no dominance or epistatic e�ects. These assumptions are given as basis of much
of the methodology used in animal breeding (e.g. Kennedy, 1995) and will be
used here as well. By assumptions of the additive genetic in�nitesimal model,
then it can be argued by the central limit theorem that the random e�ects
associated with additive genetic values of animals follow a multivariate normal
distribution (e.g. Bulmer, 1980), with common mean and variance covariance
matrix A�2a, where A is a known matrix, namely the numerator relationship
matrix. The ij0th o�-diagonal element of A is the numerator of Wright's (1922)
coeÆcient of relationship between animals i and j and the i0th diagonal element
is 1+fi, where fi is Wright's (1922) coeÆcient of inbreeding for animal i (Quass,
1976). In this paper, we work under the assumption of no inbreeding; i.e. fi = 0
for all i.

Example 1 Consider three half sibs, C1, C2 and C3, with a common father
and three di�erent mothers. It is implicitly assumed that the father and the
three di�erent mothers are mutually unrelated. In this example the matrix A
(associated with C1, C2 and C3) is:

A =

0@ 1 1
4

1
4

1
4 1 1

4
1
4

1
4 1

1A
Without inbreeding then A is a correlation matrix. The correlation between
additive genetic values of any two halfsibs is 1

4 , reecting the fact that (on
average) they share one quarter of their genes.

Notation 2 Usually Yi is used as notation for a random variable and yi as
notation for a speci�c value of that random variable. In this paper we will some-
times use e.g. ai (ei) for a random variable and sometimes for a speci�c value
of the random variable. The interpretation should be clear from the context.

3 Linear mixed model

3.1 Animal model

For normally distributed traits (e.g. milk, fat or protein yield in cattle) then
the animal model used for genetic evaluations could be given by
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Yi = xi� + ai + ei

for i = 1; :::; n, with a � Nn

�
0;A�2a

�
and e � Nn

�
0; In�

2
e

�
; furthermore a and

e are assumed to be independent. In this model we know that the parameters�
�; �2a; �

2
e

�
, where 0 < �2a; �

2
e < 1, are identi�able if and only if the design

matrix X (with rows xi) has full column rank, and at least one Aij , for i 6= j
satisfy 0 < Aij (at least two di�erent animals are related, i.e. the additive
genetic values of these two animals are correlated).

3.2 Sire model

Next consider the sire model given by

eYi = xi e� + sg(i) + eei (1)

for i = 1; :::; n and with g (i) 2 f1; :::; Gg, where s � NG

�
0; IG�

2
s

�
and ee �

Nn

�
0; In�

2
ee

�
; furthermore s and ee are assumed to be independent. For all sire

models considered in this paper, we will assume the following: For all j 2
f1; :::; Gg there exist at least one animal i 2 f1; :::; ng with g (i) = j. In this

model we know that the parameters
�e�; �2s ; �2

ee

�
, where 0 < �2s ; �

2
ee < 1, are

identi�able if and only if the design matrix X (with rows xi) has full column
rank and G < n (i.e. at least one sire has more than one o�spring).

3.3 Equivalence of sire and animal models

We also know that for a parameterised (parameters identi�able) sire model given
by (1) there exists an equivalent animal model (where A is a block diagonal
matrix. Each block of A relates to animals of a given sire, and has diagonal
elements equal to 1, and o� diagonal elements equal to 1=4) if and only if:

�2s <
1
3�

2
ee . The equivalent animal model is determined by � = e�, ��2a + �2e

�
=�

�2s + �2
ee

�
and �2a = 4�2s .

4 Threshold models

4.1 Binary trait

4.1.1 Animal model

Now consider the animal model, for a binary threshold character given by

Yi =

�
1 if Ui > �
0 if Ui � �

(2)

where Ui = xi�+ai+ei, for i = 1; :::; n; a � Nn

�
0;A�2a

�
and e � Nn

�
0; In�

2
e

�
;

a and e are assumed to be independent. Let X denote the design matrix as-
sociated with �xed e�ects on the underlying scale, the U -scale (or the liability
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scale). For reasons of identi�ability and provided that the vector of ones, 1,
belongs to span of the columns of X, then without loss of generality we can
assume that � = 0 and �2a + �2e = 1 (or instead of a restriction on �2a + �2e we
could have put a restriction on only �2a or �2e ).

Theorem 3 In the model speci�ed by (2) (and with above mentioned restric-
tions imposed), the parameters

�
�; �2a

�
, where 0 < �2a < 1, are identi�able if and

only if
A1) The design matrix X (with rows xi) has full rank.
A2) At least one Aij , for i 6= j, satisfy 0 < Aij . I.e. the matrix M has rank

2, where M is the n2� 2 dimensional matrix with entries M(i;j);k, i; j = 1; :::; n
and k = 1; 2; M(i;j);1 = Aij and M(i;j)2 = 1 fi = jg.

Proof: Conditions A1 and A2 are suÆcient for identi�cation of parameters�
�; �2a

�
: From P (Yi = 1) = � (xi�), it follows, that condition A1 is suÆcient for

identi�cation of �. Next let �i = ai+ei; having identi�ed �, then for two related
animals, i 6= j, consider the joint probability P (Yi = 0; Yj = 0) as a function

of �2a. Notice that P (Yi = 0; Yj = 0) =
R �xi�
�1 P (�j < �xj�j�i)' (�i) d��i =R �xi�

�1 �

�
�xj��Aij�

2
a�ip

1�A2
ij
�4a

�
' (�i) d�i (because �j j�i � N

�
Aij�

2
a�i; 1�A2

ij�
4
a

�
).

If xj� � 0 and xi� � Aijxj�, then the joint probability P (Yi = 0; Yj = 0)
is a strictly increasing function of �2a. Similarly, by interchanging the roles
of i and j, then P (Yi = 0; Yj = 0) is a strictly increasing function of �2a for
xi� � 0 and xj� � Aijxi�. If xj� � 0 and xj� � Aijxi�, then the joint

probability P (Yi = 1; Yj = 1) =
R1
�xj�

�

�
xi�+Aij�

2
a�jp

1�A2
ij�

4
a

�
' (�j) d�j is a strictly

increasing function of �2a. And by symmetry, then P (Yi = 1; Yj = 1) is also a
strictly increasing function of �2a, for xi� � 0 and xi� � Aijxj�.

Conditions A1 and A2 are necessary for identi�cation of parameters
�
�; �2a

�
:

Assume that condition A1 is not ful�lled, then there exist a vector � 6= (0; :::; 0)
with xi� = 0 for all i. This implies that (at least) two di�erent sets of param-
eters,

�
�; �2a

�
and

�
� + �; �2a

�
, give equivalent models; i.e. nonidenti�ability of

parameters. Next, assume that condition A2 is not ful�lled, then Aij = 0 for
all i 6= j. Next take �2a 6= �2a, with 0 < �2a < 1. It follows that (at least) two
di�erent sets of parameter,

�
�; �2a

�
and

�
�; �2a

�
, give equivalent models. Q.E.D.

4.1.2 Sire model

Next consider the sire model, for a binary threshold character, given by

eYi =
(

1 if eUi > e�
0 if eUi � e� (3)

where eUi = xi e� + sg(i) + eei, for i = 1; :::; n and with g (i) 2 f1; :::; Gg; s �
NG

�
0; IG�

2
s

�
, ee � Nn

�
0; In�

2
ee

�
; furthermore s and ee are assumed to be inde-

pendent. Again, for reasons of identi�ability and provided that the vector of
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ones, 1, belongs to span of the columns of X, then without loss of generality we
can assume that e� = 0 and �2s + �2

ee = 1 (or instead of a restriction on �2s + �2
ee

we could have put a restriction on only �2s or �2
ee ).

Theorem 4 In the model speci�ed by (3) (and with above mentioned restric-

tions imposed), the parameters
�e�; �2s�, where 0 < �2s < 1, are identi�able if

and only if
A1) The design matrix X (with rows xi) has full rank.
A2) G < n (at least one sire has more than one o�spring), i.e. the matrix

M has rank 2, where M is the n2 � 2 dimensional matrix with entries M(i;j);k,
i; j = 1; :::; n and k = 1; 2; M(i;j);1 = 1 fg (i) = g (j)g and M(i;j);2 = 1 fi = jg.

Proof: The proof is similar to the proof of Theorem 3.

4.1.3 Equivalence of sire and animal models

We have the following result concerning conditions under which the sire model
is consistent with the animal model:

Theorem 5 For a parameterised sire model, for a binary threshold character
speci�ed by (3) (and with above mentioned restrictions imposed), there exists
an equivalent parameterised animal model (with above mentioned restrictions
imposed and with A a block diagonal matrix given exactly as for the linear
mixed model) - if and only if: �2s <

1
3�

2
ee (i.e. �2s <

1
4).

The equivalent animal model is determined by � = e� and �2a = 4�2s .

Proof: Existence of an equivalent animal model implies �2s <
1
4 : Now assume

that an equivalent animal model exists. From P (Yi = 1) = P
�eYi = 1

�
it follows

that � = e�. Furthermore, if xj� � 0 and xi� � Aijxj�, then for two halfsibs, i

and j, we consider P (Yi = 0; Yj = 0) = P
�eYi = 0; eYj = 0

�
, i.e.

Z �xi�

�1

�

0@�xj� � 1
4�

2
a�iq

1� � 14�2 �4a
1A' (�i) d�i =

Z �xi�

�1

�

 
�xj� � �2s e�ip

1� �4s

!
' (e�i) de�i

The left side is a strictly increasing function of 1
4�

2
a and the right side is the

same function of �2s . This implies that
1
4�

2
a = �2s , and further that �2s <

1
4 . (We

consider either P (Yi = 0; Yj = 0) = P
�eYi = 0; eYj = 0

�
or P (Yi = 1; Yj = 1) =

P
�eYi = 1; eYj = 1

�
depending on the position of (xi�; xj�), and according to

the proof of Theorem 3).
�2s <

1
4 implies existence of an animal model equivalent to the sire model:

Let � = e� and �2a = 4�2s , then (xi� + ai + ei)i=1;:::;n and�
xi e� + sg(i) + eei�

i=1;:::;n
are identically and normally distributed and therefore

also (Yi)i=1;:::;n and
�eYi�

i=1;:::;n
are identically distributed. Q.E.D.
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4.2 Categorical trait with more than two categories

4.2.1 Animal model

The animal model, for an ordered categorical threshold character with K � 3
categories, is given by

Yi =

8>>>>><>>>>>:

1 if �1 < Ui � �1
2 if �1 < Ui � �2

...
K � 1 if �K�2 < Ui � �K�1
K if �K�1 < Ui <1

(4)

where �1 < �1 < �2 < � � � < �K�1 <1, Ui = xi�+ai+ ei, for i = 1; :::; n and
a � Nn

�
0;A�2a

�
, e � Nn

�
0; In�

2
e

�
, a and e are assumed to be independent.

Let X denote the design matrix associated with �xed e�ects on the underlying
scale, the U -scale (or the liability scale). Then again, as for binary traits, for
reasons of identi�ability and provided that the vector of ones, 1, belongs to span
of the columns of X, then without loss of generality we can assume that �1 = 0
and �2a + �2e = 1 (or instead of a restriction on �2a + �2e we could have put a
restriction on only �2a or �2e or one of the thresholds, �2; :::; �K�1).

Theorem 6 In the model speci�ed by (4) (and with above mentioned restric-
tions imposed), the parameters

�
�; �2; :::; �K�1; �

2
a

�
, where 0 < �2a < 1, are

identi�able if and only if
A1) The design matrix X (with rows xi) has full rank.
A2) At least one Aij , for i 6= j, satisfy 0 < Aij .

Proof: Conditions A1 and A2 are suÆcient for identi�cation of parameters�
�; �2; :::; �K�1; �

2
a

�
: From P (Yi � 2) = � (xi�), it follows, that condition A1 is

suÆcient for identi�cation of �. Having identi�ed �, then �k, k = 2; :::;K�1 can
be identi�ed from P (Yi = k) = � (�k � xi�) � � (�k�1 � xi�). Identi�ability
of �2a is established by considering joint probabilities P (Yi = 1; Yj = 1) and
P (Yi > 1; Yj > 1) for two related animals i 6= j (see proof of Theorem 3).

Conditions A1 and A2 are necessary for identi�cation of parameters (�, �2,
:::, �K�1, �

2
a): Straightforward from the proof of Theorem 3. Q.E.D.

4.2.2 Sire model

The sire model, for an ordered categorical threshold character, with K � 3
categories, is given by

eYi =
8>>>>>><>>>>>>:

1 if �1 < eUi � e�1
2 if e�1 < eUi � e�2

...

K � 1 if e�K�2 < eUi � e�K�1
K if e�K�1 < eUi <1

(5)
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where �1 < e�1 < e�2 < � � � < e�K�1 <1, eUi = xi e� + sg(i) + eei, for i = 1; :::; n,

g (i) 2 f1; :::; Gg and s � NG

�
0; IG�

2
s

�
, ee � Nn

�
0; In�

2
ee

�
; furthermore s and ee

are assumed to be independent. Again, for reasons of identi�ability and provided
that the vector of ones, 1, belongs to span of the columns of X, then without
loss of generality we can assume that e�1 = 0 and �2s + �2

ee = 1 (or instead of a
restriction on �2s + �2

ee we could have put a restriction on only �2s or �2
ee or one

of the thresholds, e�2; :::; e�K�1).
Theorem 7 In the model speci�ed by (5) (and with above mentioned restric-

tions imposed), the parameters
�e�; e�2; :::; e�K�1; �2s�, where 0 < �2s < 1, are

identi�able if and only if
A1) The design matrix X (with rows xi) has full rank.
A2) G < n.

Proof: The proof is similar to the proof of Theorem 6.

4.2.3 Equivalence of sire and animal model

We have the following result concerning conditions under which the sire model
is consistent with the animal model:

Theorem 8 For a parameterised sire model for an ordered categorical trait
with more than two categories, speci�ed by (5), (and with above mentioned re-
strictions imposed), there exists an equivalent parameterised animal model (with
above mentioned restrictions imposed and with A a block diagonal matrix given
exactly as for the linear mixed model) - if and only if: �2s <

1
3�

2
ee (i.e. �2s <

1
4).

The equivalent animal model is determined by � = e�, �2a = 4�2s and (�2, :::,
�K�1)=(e�2, :::, e�K�1).

Proof: Existence of an equivalent animal model implies �2s <
1
4 : Now as-

sume that an equivalent animal model exists. From P (Yi = 1) = P
�eYi = 1

�
it follows that � = e�. And from P (Yi = k) = P

�eYi = k
�
we obtain �k =e�k, for k = 2; :::;K � 1. Next, proceeding as for binary traits (now consid-

ering either P (Yi = 1; Yj = 1) = P
�eYi = 1; eYj = 1

�
or P (Yi > 1; Yj > 1) =

P
�eYi > 1; eYj > 1

�
depending on the position of (xi�; xj�)) we obtain

1
4�

2
a = �2s .

This implies �2s <
1
4 .

�2s <
1
4 implies existence of an animal model equivalent to the sire model:

Let � = e� and �2a = 4�2s , then (xi� + ai + ei)i=1;:::;n and�
xi e� + sg(i) + eei�

i=1;:::;n
are identically and normally distributed. Therefore,

with (�2, :::, �K�1) = (e�2, :::, e�K�1), then also (Yi)i=1;:::;n and
�eYi�

i=1;:::;n
are

identically distributed. Q.E.D.

9



5 Poisson mixed model

Both of the animal and sire models for traits following a Poisson mixed model
are special cases of the multivariate Poisson - log normal distribution described
by Aitchinson and Ho (1989).

5.1 Animal model

The Poisson animal model will be de�ned by Yij�i � Po (�i), where �i = exp (�i)
with �i given by

�i = log (�i) = xi� + ai + ei (6)

for i = 1; :::; n, where a � Nn

�
0;A�2a

�
and e � Nn

�
0; In�

2
e

�
, furthermore a

and e are assumed to be independent, and conditional on � (the vector of �0is)
then all of the Y 0i s are assumed to be independent. In the Poisson animal model
the conditional mean and variance of Yi given �i are given by

E (Yij�i) = V ar (Yij�i) = �i = exp (�i)

The expected values of Yi, Yi (Yi � 1) and YiYj (for i 6= j) are given by

E (Yi) = exp

�
xi� +

1

2

�
�2a + �2e

��
(7)

E (Yi (Yi � 1)) = exp
�
2xi� + 2

�
�2a + �2e

�	
E (YiYj) = exp

�
xi� + xj� +

�
�2a + �2e

�
+Aij�

2
a

	
Theorem 9 In the Poisson animal model speci�ed by (6), the parameters (�,
�2a, �

2
e), where 0 < �2a; �

2
e <1, are identi�able if and only if

A1) The design matrix X (with rows xi) has full rank.
A2) At least one Aij , for i 6= j, satisfy 0 < Aij .

Proof: From (7) it follows that for 0 < �2a; �
2
e < 1, then the parameters�

�; �2a; �
2
e

�
are identi�able if conditions A1 and A2 are satis�ed. If condition

A1 is relaxed, then there exist a vector � 6= (0; :::; 0) with xi� = 0 for all i.
This implies that (at least) two di�erent sets of parameters,

�
�; �2a; �

2
e

�
and�

� + �; �2a; �
2
e

�
, give equivalent models; i.e. nonidenti�ability of parameters. If

condition A2 is relaxed, then Aij = 0 for all i 6= j, and then we can take �2a
6= �2a, with �

2
a+�

2
e = �2a+�

2
e . It follows that the two di�erent sets of parameters,�

�; �2a; �
2
e

�
and

�
�; �2a; �

2
e

�
, give equivalent models. Q.E.D.

5.2 Sire model

The Poisson sire model will be de�ned by eYije�i � Po
�e�i�, where e�i = exp (e�i)

with e�i given by e�i = log
�e�i� = xi e� + sg(i) + eei (8)

10



for i = 1; :::; n, g (i) 2 f1; :::; Gg, where s � NG

�
0; IG�

2
s

�
and ee � Nn

�
0; In�

2
ee

�
,

furthermore s and ee are assumed to be independent, and conditional on e� (the

vector of e�0is) then all of the eY 0i s are assumed to be independent. In the Poisson

sire model the conditional mean and variance of eYi given e�i are given by

E
�eYije�i� = V ar

�eYije�i� = e�i = exp (e�i)
The expected values of eYi, eYi �eYi � 1

�
and eYi eYj (for i 6= j) are given by

E
�eYi� = exp

�
xi e� + 1

2

�
�2s + �2

ee

��
E
�eYi �eYi � 1

��
= exp

n
2xi e� + 2

�
�2s + �2

ee

�o
E
�eYi eYj� = exp

n
xi e� + xj e� + ��2s + �2

ee

�
+ �2s

o
Theorem 10 In the Poisson sire model speci�ed by (8), the parameters (e�, �2s ,
�2
ee), where 0 < �2s ; �

2
ee <1, are identi�able if and only if

A1) The design matrix X (with rows xi) has full rank.
A2) G < n.

Proof: The proof is similar to the one given for identi�ability of parameters
in the Poisson animal model.

5.3 Equivalence of sire and animal model

For the model speci�ed by: eYije�i � Po
�e�i�, where e�i = exp (e�i) with e�i

given by e�i = log
�e�i� = xi e� + sg(i), for i = 1; :::; n, g (i) 2 f1; :::; Gg; s �

NG

�
0; IG�

2
s

�
with �2s > 0, there does not exist an equivalent animal model.

Or identically, the model (8) without an error term in e�i is not consistent with
assumptions of the additive genetic in�nitesimal model. This follows from:

Theorem 11 For a parameterised Poisson sire model given by (8), there exists
an equivalent parameterised Poisson animal model (with A a block diagonal
matrix given exactly as for the linear mixed model) - if and only if: �2s <

1
3�

2
ee .

The equivalent animal model is determined by � = e�, �2a+�2e = �2s +�
2
ee and

�2a = 4�2s .

Proof: Existence of an equivalent animal model implies �2s < 1
3�

2
ee : Now

assume that an equivalent animal model exists. Then E (Yi) = E
�eYi�,

E (Yi (Yi � 1)) = E
�eYi �eYi � 1

��
and E (YiYj) = E

�eYi eYj�. These equations

can only be solved if �2s <
1
3�

2
ee .

�2s <
1
3�

2
ee implies existence of an animal model equivalent to the sire model:

Let � = e�, �2a = 4�2s and �2a + �2e = �2s + �2
ee , then (xi� + ai + ei)i=1;:::;n and

11



�
xi e� + sg(i) + eei�

i=1;:::;n
are identically and normally distributed, and therefore

also (Yi)i=1;:::;n and
�eYi�

i=1;:::;n
are identically distributed. Q.E.D.

6 Survival models

6.1 Weibull frailty model

6.1.1 Animal model

Now consider the Weibull, log normal animal frailty model, for survival times
(Ti)i=1;::;n, where the hazard function for Ti, conditional on �i, is given by

�i (tj�i) = �0 (t) exp fxi� + �ig (9)

where �0 (t) = p (t)
p�1

, and where �i = ai + ei with a � Nn

�
0;A�2a

�
and

e � Nn

�
0; In�

2
e

�
; a and e are assumed to be independent, and conditional on

� (the vector of �0is), then all of the T 0is are assumed to be independent. The
model is a log linear model for Ti (see Appendix) given by

Yi = log (Ti) = � log ()� 1

p
xi� � 1

p
ai � 1

p
ei +

1

p
"i

where "i follows an extreme value distribution, with E ("i) = �E, where E
is Euler's constant, and V ar ("i) = �2=6; all of the "0is are independent and
independent of a and e. The expected value and the variance of Yi, the expected
value of (Yi �E (Yi))

3
and the covariance between Yi and Yj (for i 6= j) are given

by

E (Yi) = � log ()� 1

p
xi� � 1

p
E

V ar (Yi) =
1

p2

�
�2a + �2e +

�2

6

�
(10)

E
�
(Yi �E (Yi))

3
�

=
1

p3
 (2) (1)

Cov(Yi; Yj) =
1

p2
Aij�

2
a

where  (�) is the digamma function.
Theorem 12 In the Weibull log normal animal frailty model speci�ed by (9),
the parameters

�
p; ; �; �2a; �

2
e

�
, where 0 < �2a; �

2
e < 1, are identi�able if and

only if the following conditions are satis�ed:
A1) The n2 � p dimensional matrix C = (xi � xj)i;j=1;:::;n (with rows

(xi � xj)) has full column rank.
A2) At least one Aij , for i 6= j, satisfy 0 < Aij . I.e. the matrix M has rank

2, where M is the n2� 2 dimensional matrix with entries M(i;j);k, i; j = 1; :::; n
and k = 1; 2; M(i;j);1 = Aij and M(i;j)2 = 1 fi = jg.

12



Remark 13 Condition A1, namely that C has full rank is equivalent to:
(X;1n�1) has full rank, where (X;1n�1) is the design matrix X (with rows xi)
supplied with a column of ones.

Proof: Conditions A1 and A2 are suÆcient for identi�cation of parame-
ters: From (10) it follows, under conditions A1 and A2, that the parameters�
p; ; �; �2a; �

2
e

�
are identi�able.

Conditions A1 and A2 are necessary for identi�cation of parameters:
Condition A1: Assume that condition A1 is not ful�lled, then there exists a

vector � = (�1; :::; �p) 6= (0; :::; 0) with (xi � xj)� = 0 for i; j = 1; :::; n, so that
(for �xed j):

�i (tj�i) = p (t)
p�1

exp fxi� + �ig
= p (t)

p�1
exp f�xj�g exp fxi (� + �) + �ig

This implies that (at least) two di�erent sets of parameters,
�
p; ; �; �2a; �

2
e

�
and�

p;  exp
n
� 1

p
xj�

o
; (� + �) ; �2a; �

2
e

�
give equivalent models, i.e. nonidenti�a-

bility of parameters.
Condition A2: Now assume that rank(M) = 1, then Aij = 1 fi = jg. Next

take
�
�2a; �

2
e

� 6= ��2a; �2e�, with �2a + �2e = �2a + �2e . It follows that (at least) two

di�erent sets of parameters,
�
p; ; �; �2a; �

2
e

�
and

�
p; ; �; �2a; �

2
e

�
, give equivalent

models. Q.E.D.

6.1.2 Sire model

Next consider the Weibull, log normal sire frailty model for survival times�eTi�
i=1;:::;n

, where the hazard function for eTi, conditional on e�i is given by

e�i (tje�i) = e�0 (t) expnxi e� + e�io (11)

where e�0 (t) = epe (et)ep�1, and where e�i = sg(i) + eei, g (i) 2 f1; :::; Gg, with
s � NG

�
0; IG�

2
s

�
and ee � Nn

�
0; In�

2
ee

�
; s and ee are assumed to be independent,

and conditional on e�, then all of the eT 0is are assumed to be independent. This

model is a log linear model for eTi given by

eYi = log
�eTi� = � log (e)� 1epxi e� � 1epsg(i) � 1epeei + 1epe"i

where e"i follows an extreme value distribution; all of the e"0is are independent

and independent of s and ee. The expected value and the variance of eYi, the
expected value of

�eYi �E
�eYi��3 and the covariance between eYi and eYj (for

13



i 6= j) are given by

E
�eYi� = � log (e)� 1epxi e� � 1epE

V ar
�eYi� =

1ep2
�
�2s + �2

ee +
�2

6

�
E

��eYi �E
�eYi��3� =

1ep3 (2) (1)

Cov(eYi; eYj) =
1ep2�2s

Theorem 14 In the Weibull, log normal sire frailty model speci�ed by (11), the

parameters
�ep; e; e�; �2s ; �2

ee

�
, where 0 < �2s ; �

2
ee < 1, are identi�able if and only

if
A1) The n2 � p dimensional matrix C = (xi � xj)i;j=1;:::;n (with rows

(xi � xj)) has full rank.
A2) G < n (at least one sire has more than one o�spring), i.e. the matrix

M has rank 2, where M is the n2 � 2 dimensional matrix with entries M(i;j);k,
i; j = 1; :::; n and k = 1; 2; M(i;j);1 = 1 fg (i) = g (j)g and M(i;j);2 = 1 fi = jg.

Proof: The proof is similar to the one given for identi�ability of parameters
in the Weibull, log normal animal frailty model.

6.1.3 Equivalence of sire and animal models

For the model speci�ed by e�i (tje�i) = �0 (t) exp
n
xi e� + e�io for i = 1; :::; n,

where �0 (t) = epe (et)ep�1, and where e�i = sg(i), g (i) 2 f1; :::; Gg, with s �
NG

�
0; IG�

2
s

�
, there does not exist an equivalent animal model. Or identically

the 'sire' model without an error term in log frailty is not consistent with as-
sumptions of the additive genetic in�nitesimal model. This follows from:

Theorem 15 For a parameterised Weibull, log normal sire frailty model given
by (11), there exists an equivalent parameterised animal model (with A a block
diagonal matrix given exactly as for the linear mixed model) - if and only if:
�2s <

1
3�

2
ee .

The equivalent animal model is determined by p = ep,  = e, � = e�,�
�2a + �2e

�
=
�
�2s + �2

ee

�
and �2a = 4�2s .

Proof: Existence of an equivalent animal model implies �2s <
1
3�

2
ee : Now as-

sume that an equivalent animal model exists. Then E (Yi) = E
�eYi�, V ar (Yi) =

V ar
�eYi�, E �(Yi �E (Yi))

3
�
= E

��eYi �E
�eYi��3� and Cov(Yi; Yj) =

Cov(eYi; eYj). These equations can only be solved if �2s <
1
3�

2
ee .

14



�2s <
1
3�

2
ee implies existence of an animal model equivalent to the Weibull,

log normal sire frailty model: Let p = ep,  = e, � = e�, �2a = 4�2s and�
�2a + �2e

�
=
�
�2s + �2

ee

�
, then (ai + ei)i=1;:::;n and

�
sg(i) + eei�i=1;:::;n

are iden-

tically and normally distributed and furthermore (Yi)i=1;:::;n and
�eYi�

i=1;:::;n

are identically distributed. Q.E.D.

6.2 Cox frailty model

6.2.1 Animal model

Consider the Cox, log normal animal frailty model for survival times (Ti)i=1;:::;n,
where the hazard function for Ti, conditional on �i, is given by

�i (tj�i) = �0 (t) exp fxi� + �ig (12)

where �i = ai + ei, with a � Nn

�
0;A�2a

�
and e � Nn

�
0; In�

2
e

�
; a and e

are assumed to be independent, and conditional on �, then all of the T 0is are
assumed to be independent. The baseline hazard, �0 : [0;1) ! [0;1) is
assumed to satisfy �0 (t) <1 for all t 2 [0;1), with limt!1 �0 (t) =1, where

�0 (t) =
R t
0
�0 (s) ds is the integrated baseline hazard function. Besides this,

�0 (�) is completely arbitrary.

Theorem 16 In the model speci�ed by (12), the parameters
�
�0 (�) ; �; �2a; �2e

�
,

where 0 < �2a; �
2
e < 1, are identi�able if and only if the following conditions

are satis�ed:
A1) The n2 � p dimensional matrix C = (xi � xj)i;j=1;:::;n (with rows

(xi � xj)) has full rank.
A2) At least one Aij , for i 6= j satisfy 0 < Aij . I.e. the matrix M has rank

2, where M is the n2� 2 dimensional matrix with entries M(i;j);k, i; j = 1; :::; n
and k = 1; 2; M(i;j);1 = Aij and M(i;j)2 = 1 fi = jg.

Proof: The Theorem is proved for rank (C) � 1 and rank (C) = 0, sepa-
rately. First for rank (C) � 1:

Conditions A1 and A2 are suÆcient for identi�cation of the parameters�
�0 (�) ; �; �2a; �2e

�
: The proof is by constructive identi�cation, and inspired by

Kortram et al. (1995). In the model speci�ed by (12), we have that the inte-
grated hazard function of animal i, conditional on �i, is �i (tj�i) =
exp fxi� + �ig�0 (t); the conditional survival function of Ti, given �i, is
Si (tj�i) = exp f��i (tj�i)g and the marginal survival function of Ti is

Si (t) =

Z 1

�1

Si (tj�i) p (�i) d�i = E [exp f� exp fxi� + �ig�0 (t)g]

= Le�i (exp fxi�g�0 (t))

where p (�) is the density of �i, and Le�i is the Laplace transform of exp f�ig. For
notational convenience we let L = Le�i and notice that L only depends on �2� =
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�2a + �2e . Remember that L : [0;1) ! (0; 1 ] is a strictly decreasing function
with L (0) = 1 (and L�1 : (0; 1 ]! [0;1) is a strictly decreasing function with
L�1 (1) = 0), and note that the right �rst and second order derivatives L0 (0)
and L00 (0) exists with L0 (0) = � exp

�
1
2�

2
�

	
and L00 (0) = exp

�
2�2�
	
.

Identi�ability of �: Using a �rst order Taylor series expansion of L (�) around
zero, it follows that

1� Si (t) = 1� L (exp fxi�g�0 (t))

= �L0 (0) exp fxi�g�0 (t) + o (exp fxi�g�0 (t))

= exp

�
1

2
�2�

�
exp fxi�g�0 (t) + o (�0 (t))

so that

1� Si (t)

1� Sj (t)
! exp fxi�g

exp fxj�g = exp f(xi � xj) �g for t # inf fu : �0 (u) > 0g

where inf fu : �0 (u) > 0g = inf fu : Sk (u) < 1g for k = 1; :::; n. It follows that
condition A1 is suÆcient for identi�cation of �.

Intermediate step that leads to identi�cation of exp
�
1
2�

2
�

	
L�1 (x): Now let

S�1i be a generalised inverse of Si, i.e. Si
�
S�1i (x)

�
= x for x 2 (0; 1 ], then

��10 : [0;1) ! [0;1) de�ned by ��10 (t) = S�1i (L (exp fxi�g t)) for t 2 [0;1)
is a generalised inverse of �0 (�), because
�0

�
��10 (t)

�
= �0

�
S�1i (L (exp fxi�g t))

�
= exp f�xi�gL�1

�
L
�
exp fxi�g�0

�
S�1i (L (exp fxi�g t))

���
= exp f�xi�gL�1

�
Si
�
S�1i (L (exp fxi�g t))

��
= t

and S�1i (x) = ��10

�
exp f�xi�gL�1 (x)

�
is a generalised inverse of Si (�). Hav-

ing identi�ed �, then we consider SiS
�1
j for two animals i and j with

exp f(xj � xi)�g > 1. Let c = exp f(xj � xi)�g, it follows that
Si
�
S�1j (x)

�
= L

�
exp fxi�g�0

�
��10

�
exp f�xj�gL�1 (x)

���
= L

�
c�1L�1 (x)

�
and

�
SiS

�1
j

�n
(x) = L

�
c�nL�1 (x)

�
where

�
SiS

�1
j

�n
(x) is the n-fold composi-

tion of SiS
�1
j . Using a �rst order Taylor series expansion of L (�) around zero,

it follows that

1� �SiS�1j

�n
(x) = 1� L

�
c�nL�1 (x)

�
= �L0 (0) �c�nL�1 (x)� 0

�
+ o

�
c�nL�1 (x)

�
= exp

�
1

2
�2�

�
c�nL�1 (x) + o

�
c�n

�
for n!1

and therefore (dividing by c�n on both sides) that

exp

�
1

2
�2�

�
L�1 (x) = lim

n!1
cn
�
1� �SiS�1j

�n
(x)
�
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for x 2 (0; 1 ]. So now the product exp
�
1
2�

2
�

	
L�1 (x) is identi�ed. Note: Here

rank(C) � 1 is used in order to identify exp
�
1
2�

2
�

	
L�1 (x) - otherwise we could

not �nd two animals, i and j, with exp f(xj � xi)�g > 1.
Identi�ability of �2� and L: Di�erentiating exp

�
1
2�

2
�

	
L�1 (x) twice w.r.t.

x gives exp
�
1
2�

2
�

	��L00(L�1(x))
(L0(L�1(x)))3

�
, which evaluated for x = 1 gives exp

�
�2�
	
.

Hereby exp
�
�2�
	
is identi�ed and therefore also the Laplace transform L, which

only depends on �2� .
Identi�ability of �0 (�): This follows because �0 (t) = exp f�xi�gL�1 (Si (t)).
Identi�ability of �2a and �2e : With �0 (t) known, then the model speci�ed in

(12) is equivalent to a linear model for Yi = log (�0 (Ti)) (see Appendix). The
model for Yi is given by

Yi = log (�0 (Ti)) = �xi� � ai � ei + "i

where "i follows an extreme value distribution; all of the "0is are independent
and independent of a and e. Thus, under assumption A2, �2a and �2e can be
identi�ed.

Conditions A1 and A2 are necessary for identi�cation of the parameters�
�0 (�) ; �; �2a; �2e

�
:

Condition A1: Assume that condition A1 is not ful�lled, then (using Remark
13) there exists a vector (�; ) = (�1; :::; �p; ) 6= (0; :::; 0) with xi�+  = 0 for
i = 1; :::; n, so that

�i (tj�i) = �0 (t) exp fxi� + �ig
= �0 (t) exp fg exp fxi (� + �) + �ig

This implies that (at least) two di�erent sets of parameters,
�
�0 (�) ; �; �2a; �2e

�
and

�
�0 (�) exp fg ; (� + �) ; �2a; �

2
e

�
give equivalent models, i.e. nonidenti�abil-

ity of parameters.
Condition A2: Now assume that rank(M) = 1, then Aij = 1 fi = jg. Next

take
�
�2a; �

2
e

� 6= �
�2a; �

2
e

�
, with �2a + �2e = �2a + �2e . It follows that (at least)

two di�erent sets of parameters,
�
�0 (�) ; �; �2a; �2e

�
and

�
�0 (�) ; �; �2a; �2e

�
, give

equivalent models.
Second for rank (C) = 0:
Condition A2 is suÆcient for identi�cation of parameters

�
�0 (�) ; �2a; �2e

�
:

The proof is by contradiction: Assume that two di�erent sets of parameters�
�0 (�) ; �2a; �2e

� 6= �
�0 (�) ; �2a; �2e

�
lead to equivalent models. Then Si (t) =

L (�0 (t)) = L
�
�0 (t)

�
, where L

�
L
�
is the Laplace transform of exp f�ig

(exp f�ig). This implies �0 (t) = L
�1
L (�0 (t)). Note that L

�
L
�
only depends

on �2�
�
�2�
�
. Next, for i 6= j, we have Si;j (s; t) = Si;j (s; t), where

Si;j (s; t) = Lexpf�ig;expf�jg (�0 (s) ;�0 (t))
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and

Si;j (s; t) = Lexpf�ig;expf�jg
�
�0 (s) ;�0 (t)

�
= Lexpf�ig;expf�jg

�
L
�1
L (�0 (s)) ; L

�1
L (�0 (t))

�
Di�erentiation of both expressions for Si;j (t; t) twice with respect to �0 (t),
equating and evaluating for �0 (t) = 0 gives

2 exp
�
2�2�
	
+ 2 exp

�
�2� +Aij�

2
a

	
(13)

= 2 exp
�
�2� +Aij�

2
a

	
+ 2 exp

�
2�2�
	

and di�erentiation of both expressions for Si;j (t; t) three times with respect to
�0 (t), equating and evaluating for �0 (t) = 0 gives

�2 exp
�
9

2
�2�

�
� 6 exp

�
5

2
�2� + 2Aij�

2
a

�
(14)

= �6 exp
�
3

2
�2� + �2� + 2Aij�

2
a

�
+ 6 exp

�
3

2
�2� + �2� +Aij�

2
a

�
�6 exp

�
5

2
�2� +Aij�

2
a

�
� 2 exp

�
9

2
�2�

�
>From the equations in (13) and (14) it follows that �2a = �2a, �

2
� = �2� and

further that �0 (�) = �0 (�), which gives a contradiction.
Condition A2 is necessary for identi�cation of parameters

�
�0 (�) ; �2a; �2e

�
:

Necessity of condition A2 is established (with obvious modi�cations) as for
rank (C) � 1. Q.E.D.

6.2.2 Sire model

Consider the Cox, log normal sire frailty model for survival times
�eTi�

i=1;:::;n
,

where the hazard function for eTi, conditional on e�i, is given by

e�i (tje�i) = e�0 (t) expnxi e� + e�io (15)

for i = 1; :::; n; where e�i = sg(i)+eei, with s � NG

�
0; IG�

2
s

�
and ee � Nn

�
0; In�

2
ee

�
;

s and ee are assumed to be independent, and conditional on e�, then all of theeT 0is are assumed to be independent. The baseline hazard, e�0 : [0;1) ! [0;1)

is assumed to satisfy e�0 (t) < 1 for all t 2 [0;1), with limt!1
e�0 (t) = 1,

where e�0 (t) =
R t
0
e�0 (s) ds is the integrated baseline hazard function. Besides

this, e�0 (�) is completely arbitrary.

Theorem 17 In the Cox, log normal sire frailty model, the parameters (e�0 (�),e�, �2s , �2
ee), where 0 < �2s ; �

2
ee < 1, are identi�able if and only if the following

conditions are satis�ed:
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A1) The n2 � p dimensional matrix C = (xi � xj)i;j=1;:::;n (with rows

(xi � xj)) has full rank.
A2) G < n (at least one sire has more than one o�spring), i.e. the matrix

M has rank 2, where M is the n2 � 2 dimensional matrix with entries M(i;j);k,
i; j = 1; :::; n and k = 1; 2; M(i;j);1 = 1 fg (i) = g (j)g and M(i;j);2 = 1 fi = jg.

Proof: The proof is similar to the proof of Theorem 16.

6.2.3 Equivalence of sire and animal models

Next we have the following result concerning conditions under which the Cox log
normal sire frailty model is consistent with assumptions of the additive genetic
in�nitesimal model.

Theorem 18 For a parameterised Cox, log normal sire frailty model given by
(15), there exists an equivalent parameterised animal model (with A a block
diagonal matrix given exactly as for the linear mixed model) - if and only if:
�2s <

1
3�

2
ee .

The equivalent animal model is determined by � = e�, �2a + �2e = �2s + �2
ee ;

�2a = 4�2s and �0 (�) = e�0 (�).

Proof: The Theorem is proved for rank (C) � 1 and rank (C) = 0, sepa-
rately. First for rank (C) � 1:

Existence of an equivalent animal model implies �2s <
1
3�

2
ee : In the sire modeleSi (tje�i) = exp

n
�e�i (tje�i)o and in the equivalent animal model Si (tj�i) =

exp f��i (tj�i)g. Let eL = Lee�i and L = Le�i (and remember that eL only
depends on �2

e� = �2s + �2
ee , and L only on �2� = �2a + �2e ), then

eSi (t) = eL�expnxi e�o e�0 (t)
�
= L (exp fxi�g�0 (t)) = Si (t)

and we want to show that this implies �2s <
1
3�

2
ee . First relationships between pa-

rameters
�e�0 (�) ; e�; �2s ; �2

ee

�
of the sire model and parameters

�
�0 (�) ; �; �2a; �2e

�
of the animal model are established:

� = e�: From
1� eSi (t)
1� eSj (t) ! exp

n
(xi � xj) e�o for t # inf

n
u : eSk (u) < 1

o
and

1� Si (t)

1� Sj (t)
! exp f(xi � xj)�g for t # inf fu : Sk (u) < 1g

it follows that � = e�, because eSk (u) = Sk (u) for k = 1; :::; n.
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�2� = �2
e� : Consider two animals, i and j, with c = exp f(xj � xi)�g =

exp
n
(xj � xi) e�o > 1, then we have

lim
n!1

cn
�
1�

�eSi eS�1j

�n
(x)
�
= exp

�
1

2
�2
e�

� eL�1 (x)
and

lim
n!1

cn
�
1� �SiS�1j

�n
(x)
�
= exp

�
1

2
�2�

�
L�1 (x)

and because cn
�
1�

�eSi eS�1j

�n
(x)
�
= cn

�
1� �SiS�1j

�n
(x)
�
, this implies that

�2� = �2
e� and L = eL.

�0 (�) = e�0 (�): It follows, because � = e�, L = eL and Si = eSi, that
�0 (t) = exp f�xi�gL�1 (Si (t))

= exp
n
�xi e�o eL�1 �eSi (t)� = e�0 (t)

�2a = 4�2s : With �0 (�) = e�0 (�) and � = e�, then eYi and Yi are identically dis-
tributed, where eYi = log

�e�0 (Ti)
�
= �xi��sg(i)�eei+e"i and Yi = log (�0 (Ti))

= �xi� � ai � ei + "i. This implies:

V ar
�eYi� = �2s + �2

ee +
�2

6
(16)

= V ar (Yi) = �2a + �2e +
�2

6

and for two halfsibs, i and j:

Cov
�eYi; eYj� = �2s (17)

= Cov (Yi; Yj) = Aij�
2
a =

1

4
�2a

Given parameters
�
�2s ; �

2
ee

�
of the sire model, then the equations (in parameters

�2a and �2e) given by (16) and (17), can only be solved if �2s <
1
3�

2
ee .

�2s < 1
3�

2
ee implies existence of an animal model equivalent to the Cox,

log normal sire frailty model: Let �0 (�) = e�0 (�), � = e�, �2a = 4�2s and�
�2a + �2e

�
=
�
�2s + �2

ee

�
, then (ai + ei)i=1;:::;n and

�
sg(i) + eei�i=1;:::;n

are iden-

tically and normally distributed and furthermore (Ti)i=1;:::;n and
�eTi�

i=1;:::;n

are identically distributed.
Second for rank (C) = 0:

In the sire model eSi (t) = eL�e�0 (t)
�
and in the equivalent animal model

Si (t) = L (�0 (t)), it follows that e�0 (t) = eL�1L (�0 (t)). Di�erentiating

eSi;j (t; t) = Lexpfe�ig;expfe�jg

�e�0 (t) ; e�0 (t)
�
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and
Si;j (t; t) = Lexpf�ig;expf�jg (�0 (t) ;�0 (t)) (= eSi;j (t; t))

twice with respect to �0 (t), equating and evaluating for �0 (t) = 0; and by

di�erentiating eSi;j (t; t) and Si;j (t; t) three times with respect to �0 (t), equating
and evaluating for �0 (t) = 0, then we obtain a set of equations - the result
follows by reasoning from these equations. Q.E.D.

6.3 Cox frailty model - extra random e�ect

6.3.1 Animal model

Next consider the Cox, log normal animal frailty model for survival times
(Ti)i=1;:::;n, where the hazard function for Ti, conditional on ul(i) and �i is
given by

�i
�
tjul(i) ; �i

�
= �0 (t) exp

�
xi� + ul(i) + �i

	
(18)

for l (i) 2 f1; :::; qg. �0 (t), �i, a and e are as before and u � Nq

�
0; Iq�

2
u

�
.

Furthermore u, a and e are assumed to be independent, and conditional on�
ul(i) + �i

�
i=1;:::;n

, then all of the T 0is are assumed to be independent.

Theorem 19 In the model speci�ed by (18), the parameters (�0 (�), �, �2u, �2a,
�2e), where 0 < �2u; �

2
a; �

2
e < 1, are identi�able if and only if the following

conditions are satis�ed:
A1) The n2 � p dimensional matrix C = (xi � xj)i;j=1;:::;n (with rows

(xi � xj)) has full rank.
A2) The matrix M has rank 3, where M is the n2 � 3 dimensional matrix

with entries M(i;j);k, i; j = 1; :::; n and k = 1; 2; 3; M(i;j);1 = 1 fl (i) = l (j)g,
M(i;j);2 = Aij and M(i;j);3 = 1 fi = jg.

Proof: The Theorem is proved for rank (C) � 1 and rank (C) = 0, sepa-
rately. First for rank (C) � 1:

Conditions A1 and A2 are suÆcient for identi�cation of the parameters�
�0 (�) ; �; �2u; �2a; �2e

�
: In the model speci�ed by (18), we have that Si (t) =

Lexpful(i) +ai+eig (exp fxi�g�0 (t)), where Lexpful(i) +ai+eig, the Laplace trans-
form of exp

�
ul(i) + ai + ei

	
, only depends on �2u + �2a + �2e . It follows that �,

�2u+�
2
a+�

2
e and �0 (�) can be identi�ed using exactly the same idea as for Cox

frailty models (without an extra random e�ect). With �0 (t) known, then the
model speci�ed in (18) is equivalent to a linear model for Yi = log (�0 (Ti)).
The model for Yi is given by

Yi = log (�0 (Ti)) = �xi� � ul(i) � ai � ei + "i

where "i follows an extreme value distribution; all of the "0is are independent
and independent of u, a and e. Thus, under assumption A2, it follows that �2u,
�2a and �2e can be identi�ed.

Conditions A1 and A2 are necessary for identi�cation of the parameters�
�0 (�) ; �; �2u; �2a; �2e

�
:
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Condition A1: For Cox frailty models, speci�ed by (18), necessity of con-
dition A1 can be established proceeding as for Cox frailty models without an
extra random e�ect.

Conditions A2: Assume that rank(M) < 3, then there exist a vector
(�1; �2; �3) 6= (0; 0; 0) such that

1 fl (i) = l (j)g�1 +Aij�2 + 1 fi = jg�3 = 0 8i; j
Next de�ne

�
�2u; �

2
a; �

2
e

�
=
�
�2u; �

2
a; �

2
e

�
+ 1

k
(�1; �2; �3), where the constant k 6= 0

is chosen so that �2u > 0, �2a > 0 and �2e > 0, and consider the model speci�ed
by:

�i
�
tjul(i) ; �i

�
= �0 (t) exp

�
xi� + ul(i) + �i

	
(19)

for i = 1; :::; n, where u � Nq

�
0; Iq�

2
u

�
, �i = ai + ei with a � Nn

�
0;A�2a

�
and

e � Nn

�
0; In�

2
e

�
; u, a and e are assumed to be independent. Equivalence of

the models speci�ed by (18) and (19), follows from

Cov
�
ul(i) + �i; ul(j) + �j

�
= 1 fl (i) = l (j)g�2u +Aij�

2
a + 1 fi = jg�2e

= 1 fl (i) = l (j)g�2u +Aij�
2
a + 1 fi = jg�2e

+
1

k
(1 fl (i) = l (j)g�1 +Aij�2 + 1 fi = jg�3)

= Cov
�
ul(i) + �i; ul(j) + �j

� 8i; j
Second for rank (C) = 0:
Condition A2 is suÆcient for identi�cation of the parameters (�0 (�), �2u,

�2a, �
2
e ): The proof is by contradiction and proceed as for Cox frailty mod-

els (without the extra random e�ect): Assume that two di�erent sets of pa-
rameters

�
�0 (�) ; �2u; �2a; �2e

� 6= �
�0 (�) ; �2u; �2a; �2e

�
lead to equivalent models.

Then Si (t) = L (�0 (t)) = L
�
�0 (t)

�
, where L

�
L
�
is the Laplace transform of

exp
�
ul(i) + ai + ei

	 �
exp

�
ul(i) + ai + ei

	�
. This implies �0 (t) = L

�1
L (�0 (t)).

Note that L
�
L
�
only depends on �2u + �2a + �2e

�
�2u + �2a + �2e

�
. Next for i 6= j

consider

Si;j (s; t) = Lexpful(i)+ai+eig;expful(j)+aj+ejg (�0 (s) ;�0 (t))

= Lexpful(i)+ai+eig;expful(j)+aj+ejg
�
�0 (s) ;�0 (t)

�
Di�erentiation of both expressions for Si;j (t; t) twice with respect to �0 (t),
equating and evaluating for �0 (t) = 0; and di�erentiation of both expressions
for Si;j (t; t) three times with respect to �0 (t), equating and evaluating for
�0 (t) = 0 gives a set of equations From these equations, and under condition
A2, it follows that �2u = �2u, �

2
a = �2a, �

2
e = �2e and further that �0 (�) = �0 (�),

which gives a contradiction.
Condition A2 is necessary for identi�cation of parameters

�
�0 (�) ; �2u; �2a; �2e

�
:

Necessity of condition A2 is established (with obvious modi�cations) as for
rank (C) � 1. Q.E.D.
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Example 20 Consider three animals, 1; 2 and 3. 1 and 2 are halfsibs and 3 is
unrelated to 1 and 2. In this case

�
�2u; �

2
a; �

2
e

�
can be identi�ed if M is equal to

either 0BBBBBBBBBBBB@

1 1 1
0 1

4 0
1 0 0
0 1

4 0
1 1 1
0 0 0
1 0 0
0 0 0
1 1 1

1CCCCCCCCCCCCA
or

0BBBBBBBBBBBB@

1 1 1
0 1

4 0
0 0 0
0 1

4 0
1 1 1
1 0 0
0 0 0
1 0 0
1 1 1

1CCCCCCCCCCCCA
(The rows corresponds to (i; j) equal to (1; 1), (1; 2), (1; 3), (2; 1), (2; 2), (2; 3),
(3; 1), (3; 2) and (3; 3) respectively). In both cases the two half sibs, 1 and 2, are
in di�erent herds (if u is a vector of herd e�ects), and animal 3 is in the same
herd as either animal 1 or 2.

6.3.2 Sire model

Consider the Cox, log normal sire frailty model for survival times
�eTi�

i=1;:::;n
,

where the hazard function for eTi, conditional on eul(i) and e�i is given by

e�i �tjeul(i) ; e�i� = e�0 (t) expnxi e� + eul(i) + e�io (20)

for l (i) 2 f1; :::; qg. e�0 (t), e�i, es and ee are as before (as for Cox, log normal sire
frailty models speci�ed by (15)) and eu � Nq

�
0; Iq�

2
eu

�
. Furthermore eu, es and ee

are assumed to be independent, and conditional on
�eul(i) + e�i�i=1;:::;n

, then all

of the eT 0i s are assumed to be independent.

Theorem 21 In the model speci�ed by (20), the parameters (e�0 (�), e�, �2
eu, �

2
ea,

�2
ee), where 0 < �2

eu; �
2
ea; �

2
ee < 1, are identi�able if and only if the following

conditions are satis�ed:
A1) The n2 � p dimensional matrix C = (xi � xj)i;j=1;:::;n (with rows

(xi � xj)) has full rank.
A2) The matrix M has rank 3, where M is the n2 � 3 dimensional matrix

with entries M(i;j);k, i; j = 1; :::; n and k = 1; 2; 3; M(i;j);1 = 1 fl (i) = l (j)g,
M(i;j);2 = 1 fg (i) = g (j)g and M(i;j);3 = 1 fi = jg.

Proof: The proof is similar to the proof of Theorem 19.

6.3.3 Equivalence of sire and animal models

Next we have the following result concerning conditions under which the Cox log
normal sire frailty model is consistent with assumptions of the additive genetic
in�nitesimal model.
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Theorem 22 For a parameterised Cox, log normal sire frailty model given by
(20), there exists an equivalent parameterised animal model (with A a block
diagonal matrix given exactly as for the linear mixed model) - if and only if:
�2s <

1
3�

2
ee .

The equivalent animal model is determined by � = e�, �2u + �2a + �2e = �2
eu +

�2s + �2
ee , �

2
u = �2

eu, �
2
a = 4�2s and �0 (�) = e�0 (�).

Proof: Having in mind the proofs of Theorem 19 and Theorem 18, then the
proof is straightforward. Q.E.D.

6.4 Time-dependent covariates - �xed e�ects

6.4.1 Animal model

Now consider the Cox, log normal animal frailty model with time-dependent
covariates. The e�ects associated with the time-dependent covariates are as-
sumed to be �xed, and the time-dependent covariates to be left continuous and
piecewise constant. The hazard function for survival time Ti is, conditional on
random e�ect �i, given by

�i (tj�i) = �0 (t) exp fxi1� + xi2 (t)  + �ig (21)

for i = 1; :::; n; where �0 (t), the baseline hazard function, and �i = ai + ei are
given as before, and conditional on �, then all of the T 0is are assumed to be
independent. The dimension of � is p and the dimension of  is q. We will
assume that q � 1, otherwise the model is dealt with earlier.

Notation 23 We introduce the following partitioning of R+ de�ned by jumps
in the covariate processes (xi2 (�))i=1;:::;n: R+ = [P0

m0=1 (lm0 ; rm0 ], with 1 �
P0 � 1; the subsets are disjoint (but not necessarily ordered in the sense that
rm0 = lm0+1 for m0 = 1; :::; P0 � 1). Next we consider the set of those intervals
(in the above mentioned partitioning of R+) with Si (lm0) � Si (rm0) > 0. If
Si (lm0) � Si (rm0) > 0 for some i 2 f1; :::; ng then Si (lm0) � Si (rm0) > 0 for
all i 2 f1; :::; ng. We let

[Pm=1 (lm; rm] = f(lm0 ; rm0 ] ;m0 = 1; :::; P0 : Si (lm0)� Si (rm0) > 0g
where 1 � P � P0.

Theorem 24 In the model speci�ed by (21), the parameters
�
�0 (�) ; �; ; �2a; �2e

�
,

where 0 < �2a; �
2
e < 1, are identi�able if and only if the following conditions

are satis�ed:
A1) The matrix C with rows

(xi1 � xj1; xi2 (rm)� xj2 (rm)) ,

i; j = 1; :::; n, m = 1; :::; P , has full rank.
A2) The matrix M has rank 2, where M is the n2 � 2 dimensional matrix

with entries M(i;j);k, i; j = 1; :::; n and k = 1; 2; M(i;j);1 = Aij and M(i;j)2 =
1 fi = jg.
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Proof: Conditions A1 and A2 are suÆcient for identi�cation of the param-
eters

�
�0 (�) ; �; ; �2a; �2e

�
: In the model speci�ed by (21), we have

�i (tj�i) = exp fxi1� + �ig
Z t

0

�0 (s) exp fxi2 (s) g ds,

Si (tj�i) = exp f��i (tj�i)g and

Si (t) = L

�
exp fxi1�g

Z t

0

�0 (s) exp fxi2 (s) g ds
�

where L = Le�i is the Laplace transform of exp f�ig. Therefore, for t 2 (lm; rm],
the conditional survival function of Ti given the random e�ect, �i, and Ti > lm,
is:

Si (tj�i; Ti > lm) = exp f� exp fxi1� + xi2 (rm)  + �ig (�0 (t)� �0 (lm))g

m = 1; :::; P . The conditional survival function of Ti given Ti > lm, is for
t 2 (lm; rm]:

Si (tjTi > lm) =

Z 1

�1

Si (tj�i; Ti > lm) p (�i) d�i (22)

= L (exp fxi1� + xi2 (rm) g (�0 (t)� �0 (lm)))

Identi�ability of (�; ): For t 2 (lm; rm] (all of the covariate processes of
the di�erent animals are constant in this interval), we �nd, using a �rst order
Taylor series expansion of L (�) around zero, that

1� Si (tjTi > lm)

= 1� L (exp fxi1� + xi2 (rm) g (�0 (t)� �0 (lm)))

= �L0 (0) exp fxi1� + xi2 (rm) g (�0 (t)� �0 (lm))

+o (exp fxi1� + xi2 (rm) g (�0 (t)� �0 (lm)))

= exp

�
1

2
�2�

�
exp fxi1� + xi2 (rm) g (�0 (t)� �0 (lm))

+o ((�0 (t)� �0 (lm)))

so that

1� Si (tjTi > lm)

1� Sj (tjTj > lm)
! exp f(xi1 � xj1)� + (xi2 (rm)� xj2 (rm)) g

for t # inf fu : �0 (t)� �0 (lm) > 0g

where inf fu : �0 (t)� �0 (lm) > 0g = inf fu : Si (ujTk > lm) < 1g for k = 1, :::,
n. Under assumption A1, it follows that (�; ) is identi�ed.

Intermediate step that leads to identi�cation of exp
�
1
2�

2
�

	
L�1 (x): For no-

tational convenience and for t 2 [lm;1), we let Smi (t) = Si (tjTi > lm). Having
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identi�ed (�; ), then we consider an interval (lm; rm], where for two animals, i
and j, we have

c = exp f(xj1 � xi1)� + (xj2 (rm)� xi2 (rm)) g > 1

For x 2 (Smi (rm) ; S
m
i (lm)] = (Smi (rm) ; 1] we let (S

m
i )

�1
(x) be a generalised

inverse of Smi (t). Now de�ne �m
0 (t) = �0 (t)��0 (lm), then for t 2 (lm; rm] we

have
Smi (t) = L (exp fxi1� + xi2 (rm) g�m

0 (t))

and (�m
0 )

�1
(t) de�ned by (Smi )

�1
(L (exp fxi1� + xi2 (rm) g t)) is a generalised

inverse of �m
0 (�) for t 2 �0; exp f� (xi1� + xi2 (rm) )gL�1Smi (rm)

�
and

(Smi )
�1

(x) = (�m
0 )

�1 �
exp f�fxi1� + xi2 (rm) ggL�1 (x)

�
. Next, for x 2

(Smi (rm) ; 1], consider 1�
�
Smi

�
Smj
��1�n

(x) = 1�L �c�nL�1 (x)� and identify
exp

�
1
2�

2
�

	
L�1 (x) (using exactly the same procedure as for Cox frailty models).

Identi�ability of �2� and L: Di�erentiating exp
�
1
2�

2
�

	
L�1 (x) twice w.r.t.

x and evaluating for x = 1 gives exp
�
�2�
	
. Hereby exp

�
�2�
	
is identi�ed and

therefore also L, which only depends on �2� .
Identi�ability of �0 (t) � �0 (lm) for t 2 (lm; rm], m = 1; :::; P : For t 2

(lm; rm], it follows from (22) that

�0 (t)� �0 (lm) = exp f� [xi1� + xi2 (rm) ]gL�1 (Smi (t)) .

Identi�ability of �2a and �2e : With �0 (t) and  known, then the model
speci�ed in (21) is equivalent to a linear model for Yi = log (hi (Ti)) (on the

loghi (�)-scale), where hi (t) =
R t
0
�0 (s) exp fxi2 (s) g ds. Note that the scale is

speci�c for each animal (or for groups of animals with the same time-dependent
covariates). The model for Yi is given by

Yi = log (hi (Ti)) = �xi1� � ai � ei + "i

where "i follows an extreme value distribution; all of the "0is are independent
and independent of a and e. Thus, under assumption A2, �2a and �2e can be
identi�ed.

Conditions A1 and A2 are necessary for identi�cation of the parameters�
�0 (�) ; �; ; �2a; �2e

�
: Condition A1: Assume that condition A1 is not ful�lled,

then there exist a vector (�01; �
0
2) = (�11; :::; �1p; �21; :::; �2q) 6= (0; :::; 0) with

(xi1 � xj1)�1 + (xi2 (rm)� xj2 (rm))�2 = 0 for all i; j = 1; :::; n, m = 1; :::; P ,
so that for �xed j:

�i (tj�i) = �0 (t) exp fxi1� + xi2 (t)  + �ig
= �0 (t) exp f�xj1�1 � xj2 (t)�2g

� exp fxi1 (� + �1) + xi2 (t) ( + �2) + �ig
This implies that (at least) two di�erent sets of parameters,

�
�0 (�) ; �; ; �2a; �2e

�
and

�
�0 (�) ; (� + �1) ; ( + �2) ; �

2
a; �

2
e

�
, with

�0 (�) =
Z t

0

�0 (s) exp f�xj1�1 � xj2 (s)�2g ds
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give equivalent models, i.e. nonidenti�ability of parameters.
Condition A2: Necessity of condition A2 can be established proceeding as

for Cox frailty models. Q.E.D.

6.4.2 Sire model

In the Cox log normal sire frailty model with time-dependent covariates - with
associated �xed e�ects, the hazard function of survival time eTi is, conditional
on random e�ect, e�i, given by

e�i (tje�i) = e�0 (t) expnxi1 e� + xi2 (t) e + e�io (23)

for i = 1; :::; n. e�0 (�), the baseline hazard function and e�i = sg(i) + eei are given
as described earlier, and conditional on e�, then all of the eT 0is are assumed to be

independent. The dimension of e� is p and the dimension of e is q.

Theorem 25 In the model speci�ed by (23), the parameters (e�0 (�), e�, e, �2s ,
�2
ee), where 0 < �2s ; �

2
ee <1, are identi�able if and only if the following conditions

are satis�ed:
A1) The matrix C with rows

(xi1 � xj1; xi2 (rm)� xj2 (rm)) ,

i; j = 1; :::; n, m = 1; :::; P , has full rank.
A2) The matrix M has rank 2, where M is the n2 � 2 dimensional matrix

with entries M(i;j);k, i; j = 1; :::; n and k = 1; 2; M(i;j);1 = 1 fg (i) = g (j)g and
M(i;j);2 = 1 fi = jg.

Proof: The proof is similar to the proof of Theorem 24.

6.4.3 Equivalence of sire and animal models

Furthermore, we have the following result about equivalence of sire and animal
models:

Theorem 26 For a parameterised Cox, log normal sire frailty model given by
(23), there exists an equivalent parameterised animal model (with A a block
diagonal matrix given exactly as for the linear mixed model) - if and only if:
�2s <

1
3�

2
ee .

The equivalent animal model is determined by � = e�,  = e, �2a + �2e =

�2s + �2
ee ; �

2
a = 4�2s and �0 (�) = e�0 (�).

Proof: Having in mind the proof of identi�ability of parameters in the Cox
log normal animal frailty model, with time-dependent covariates (with associ-
ated �xed e�ects) (Theorem 24) and the proof of Theorem 18, then the proof
of this Theorem is straightforward.
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6.5 Time-dependent covariates - random e�ects

6.5.1 Animal model

Now consider the Cox log normal animal frailty model with time-dependent
covariates. This time the e�ects, u, associated with the time-dependent covari-
ates are assumed to be random. The hazard function for survival time Ti is,
conditional on random e�ects, u and �i, given by

�i (tju; �i) = �0 (t) exp fxi� + zi (t)u+ �ig (24)

i = 1; :::; n; where �0 (t) is the baseline hazard function, and u � Nq

�
0; Iq�

2
u

�
;

a and e are given as before. Furthermore u, a and e are assumed to be indepen-
dent, and conditional on �, then all of the T 0is are assumed to be independent.
The time-dependent covariate, zi (t), is assumed to be left continuous and piece-
wise constant, and is, for t 2 [0;1), assumed to be a vector with exactly one
element zil0 (t) = 1, and zil (t) = 0 for l 6= l0. In this model

�i (tju; �i) = exp fxi� + �ig
Z t

0

�0 (s) exp fzi (s)ug ds

and

Si (t) =

Z 1

�1

Z 1

�1

� � �
Z 1

�1

exp f��i (tju; �i)g p (u) p (�i) dud�i

Notation 27 This time we consider disjoint subsets of R+ de�ned and indexed
exactly as in the previous section, except that now the partitioning is de�ned by
jumps in the covariate processes (zi (�))i=1;:::;n.

Theorem 28 In the model speci�ed by (24), the parameters (�0 (�), �, �2u, �2a,
�2e), where 0 < �2u; �

2
a; �

2
e < 1, are identi�able if and only if the following

conditions are satis�ed:
A1) The n2 � p dimensional matrix C = (xi � xj)i;j=1;:::;n (with rows

(xi � xj)) has full rank.
A2) The matrix M with rows

�
zi (rm1) zj (rm2)

0 ; Aij ; 1 fi = jg�, m1;m2 =
1; :::; P , i; j = 1; :::; n, has rank 3.

Proof: The Theorem is proved for rank (C) � 1 and rank (C) = 0, sepa-
rately. First for rank (C) � 1:

Conditions A1 and A2 are suÆcient for identi�cation of the parameters�
�0 (�) ; �; �2u; �2a; �2e

�
: In the model speci�ed by (24), we have for t 2 (lm; rm]:

�i (tju;�i) = exp fxi� + �ig
PX

m1=1
m1:rm1�t

exp fzi (rm1)ug (�0 (rm1)� �0 (lm1))

+ exp fxi� + �ig exp fzi (rm)ug (�0 (t)� �0 (lm))

and

Si (tju;�i; Ti > lm) = exp f� exp fxi� + zi (rm)u+ �ig (�0 (t)� �0 (lm))g
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so that

Si (tjTi > lm) = Lexpfzi(rm)u+�ig (exp fxi�g (�0 (t)� �0 (lm)))

For notational convenience we let L = Lexpfzi(rm)u+�ig and notice that L only
depends on �2u + �2� . Furthermore, we let S

m
i (t) = Si (tjTi > lm).

Identi�ability of �: For t 2 (lm; rm] we �nd, (because exp fzi (rm)u+�ig,
i = 1; :::; n are identically distributed and using exactly the same procedure as
in the proof of Theorem 24) that

1� Smi (t)

1� Smj (t)
! exp fxi�g

exp fxj�g = exp f(xi � xj)�g

for t # inf fu : �0 (u)� �0 (lm) > 0g, where inf fu : �0 (u)� �0 (lm) > 0g =
inf fu : Smk (u) < 1g for k = 1; :::; n. Under assumption A1, it follows (as before)
that � is identi�able.

Identi�ability of �2u + �2� , L and �0 (t) � �0 (lm) for t 2 (lm; rm], m =

1; :::; P : Next it follows that exp
�
1
2

�
�2u + �2�

�	
L�1 (x) can be identi�ed for

x 2 (Smi (rm) ; 1 ]. Di�erentiating exp
�
1
2

�
�2u + �2�

�	
L�1 (x) twice w.r.t. x and

evaluating for x = 1 gives exp
�
1
2

�
�2u + �2�

�	
. Hereby �2u + �2� is identi�ed and

therefore also L, which only depends on �2u+�
2
�. It follows that �0 (t)��0 (lm) =

exp f�xi�gL�1 (Smi (t)) for t 2 (lm; rm].
Identi�ability of �2u, �

2
a and �2e : The joint survival function of (Ti; Tj) con-

ditional on (u;�i;�j) and on (Ti > lm1 ; Tj > lm2) is for (s; t) 2 (lm1 ; rm1 ] �
(lm2 ; rm2 ] given by

Si;j (s; tju;�i;�j ; Ti > lm1 ; Tj > lm2)

= exp f� exp fxi� + zi (rm1)u+ �ig (�0 (s)� �0 (lm1))g
� exp f� exp fxj� + zj (rm2)u+ �jg (�0 (t)� �0 (lm2))g

It follows that

Si;j (s; tjTi > lm1 ; Tj > lm2)

= L (exp fxi�g (�0 (s)� �0 (lm1)) ; exp fxj�g (�0 (t)� �0 (lm2)))

where L is the bivariate Laplace transform of

(exp fzi (rm1)u+�ig ; exp fzj (rm2)u+�jg)

Let es = exp fxi�g (�0 (s)� �0 (lm1)) and et = exp fxj�g (�0 (t)� �0 (lm2)).
By di�erentiation of L

�es;et� with respect to es, et and both of es and et, evaluating
for
�es;et� = (0; 0), and using that

@2L(0;0)

@et@es
@L(0;0)

@es

@L(0;0)

@et

= exp fCov (zi (rm1)u+�i; zj (rm2)u+�j)g
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then we get

@2L(0;0)

@et@es
@L(0;0)

@es

@L(0;0)

@et

= exp
�
zi (rm1) zj (rm2)

0
�2u +Aij�

2
a + 1 fi = jg�2e

	
It follows that

�
�2u; �

2
a; �

2
e

�
are identi�able, provided that assumption A2 is

satis�ed.
Conditions A1 and A2 are necessary for identi�cation of the parameters�

�0 (�) ; �; �2u; �2a; �2e
�
:

Condition A1 : Necessity of condition A1 can be established proceeding as
for Cox frailty models speci�ed by (12).

Condition A2 : Assume that rank(M) < 3, then there exist a vector
(�1; �2; �3) 6= (0; 0; 0) such that�

zi (rm1) zj (rm2)
0��1 +Aij�2 + 1 fi = jg�3 = 0

for i; j = 1; :::; n, m1;m2 = 1; :::; P . Next de�ne
�
�2u; �

2
a; �

2
e

�
=
�
�2u; �

2
a; �

2
e

�
+

1
k
(�1; �2; �3), where the constant k 6= 0 is chosen so that �2u > 0, �2a > 0 and

�2e > 0, and consider the model speci�ed by:

�i (tju; �i) = �0 (t) exp fxi� + zi (t)u+ �ig (25)

for i = 1; :::; n, where u � Nq

�
0; Iq�

2
u

�
, �i = ai + ei with a � Nn

�
0;A�2a

�
and

e � Nn

�
0; In�

2
e

�
; u, a and e are assumed to be independent. Equivalence of

the models speci�ed by (24) and (25), follows from

Cov (zi (t)u+ �i; zj (t)u+ �j)

= zi (t) zj (t)
0 �2u +Aij�

2
a + 1 fi = jg�2e

= zi (t) zj (t)
0
�2u +Aij�

2
a + 1 fi = jg�2e

+
1

k

�
zi (t) zj (t)

0 �1 +Aij�2 + 1 fi = jg�3
�

= Cov
�
zi (t)u+ �i; zj (t)u+ �j

� 8i; j
- and a contradiction is established.

Second for rank (C) = 0:
Condition A2 is suÆcient for identi�cation of the parameters (�0 (�), �2u, �2a,

�2e): The proof is by contradiction: Assume that two di�erent sets of parameters�
�0 (�) ; �2u; �2a; �2e

� 6= �
�0 (�) ; �2u; �2a; �2e

�
lead to equivalent models. Then, for

t 2 (lm; rm], S
m
i (t) = L (�0 (t)� �0 (lm)) = L

�
�0 (t)� �0 (lm)

�
, where L

�
L
�

is the Laplace transform of exp fzi (rm)u+ ai + eig (exp fzi (rm)u+ ai + eig).
This implies �0 (t) � �0 (lm) = L

�1
L (�0 (t)� �0 (lm)) for t 2 (lm; rm]. Note

that L
�
L
�
only depends on �2u + �2a + �2e

�
�2u + �2a + �2e

�
. Next for i 6= j and

for s; t 2 (lm; rm] consider

Si;j (s; tjTi > lm; Tj > lm)

= Lexpfzi(rm)u+ai+eig;expfzj(rm)u+aj+ejg (�0 (s)� �0 (lm) ;�0 (t)� �0 (lm))

= Lexpfzi(rm)u+ai+eig;expfzj(rm)u+aj+ejg

�
�0 (s)� �0 (lm) ;�0 (t)� �0 (lm)

�
30



Di�erentiation of both expressions for Si;j (t; tjTi > lm; Tj > lm) twice with re-
spect to �0 (t)� �0 (lm), equating and evaluating for �0 (t)� �0 (lm) = 0; and
di�erentiation of both expressions for Si;j (t; tjTi > lm; Tj > lm) three times with
respect to �0 (t)��0 (lm), equating and evaluating for �0 (t)� �0 (lm) = 0 we
obtain a set of equations. Solving these equations, then we obtain, under condi-
tion A2, that �2u = �2u, �

2
a = �2a, �

2
e = �2e and further that �0 (�) = �0 (�). And

a contradiction is established.
Condition A2 is necessary for identi�cation of parameters

�
�0 (�) ; �2u; �2a; �2e

�
:

Necessity of condition A2 is established (with obvious modi�cations) as for
rank (C) � 1. Q.E.D.

Example 29 Consider 2 animals, 1 and 2, that are halfsibs. Animal 2 is born
one year later than animal 1 and time is measured in days. Both animals are
in the same herd. Besides time-independent �xed e�ects, the model has a time-
dependent covariate with associated random e�ects (e.g. a period-e�ect), with
z1 (t) and z2 (t) given by

z1 (t) =

�
(1; 0) for t 2 (0; 730]
(0; 1) for t 2 (730;1]

and

z2 (t) =

�
(1; 0) for t 2 (0; 365]
(0; 1) for t 2 (365;1]

respectively. We will assume that �0 (�) is strictly increasing. Let l1 = 0, r1 =
l2 = 365, r2 = l3 = 730 and r3 =1, then P = 3 and the matrix M in Theorem
28 is then (9� 4)� 3 dimensional matrix given by

M =

0BBBBBBBBBBBB@

M11

M12

M13

M21

M22

M23

M31

M32

M33

1CCCCCCCCCCCCA

31



where

M11 = M33 =

0BB@
1 1 1
1 1

4 0
1 1

4 0
1 1 1

1CCA , M12 =

0BB@
1 1 1
0 1

4 0
1 1

4 0
0 1 1

1CCA ,

M13 = M31 =

0BB@
0 1 1
0 1

4 0
0 1

4 0
0 1 1

1CCA , M21 =

0BB@
1 1 1
1 1

4 0
0 1

4 0
0 1 1

1CCA ,

M22 =

0BB@
1 1 1
0 1

4 0
0 1

4 0
1 1 1

1CCA , M23 =

0BB@
0 1 1
0 1

4 0
1 1

4 0
1 1 1

1CCA and M32 =

0BB@
0 1 1
1 1

4 0
0 1

4 0
1 1 1

1CCA
6.5.2 Sire model

In the Cox log normal sire frailty model with time-dependent covariates - with
associated random e�ects, eu, the hazard function for survival time eTi is, condi-
tional on eu and e�i given by

e�i (tjeu; e�i) = e�0 (t) expnxi e� + zi (t) eu+ e�io (26)

for i = 1; :::; n; where e�0 (t), the baseline hazard function, and e�i = sg(i) + eei
are given as described earlier; eu � Nq

�
0; Iq�

2
eu

�
. Furthermore eu, s and ee are

assumed to be independent, and conditional on (eu; e�), then all of the eT 0i s are
assumed to be independent. The time-dependent covariate, zi (t), is given as
described in section 6.5.1.

Theorem 30 In the model speci�ed by (26), the parameters (e�0 (�), e�, �2
eu, �

2
s ,

�2
ee), where 0 < e�2u; �2s ; �2

ee < 1, are identi�able if and only if the following
conditions are satis�ed:

A1) The n2 � p dimensional matrix C = (xi � xj)i;j=1;:::;n (with rows

(xi � xj)) has full rank.
A2) The matrix M with rows�

zi (rm1) zj (rm2)
0
; 1 fg (i) = g (j)g ; 1 fi = jg� ,

m1;m2 = 1; :::; P , i; j = 1; :::; n, has rank 3.

Proof: The proof is similar to the proof of Theorem 28.

6.5.3 Equivalence of sire and animal models

Furthermore we have the following result about equivalence of sire and animal
models:
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Theorem 31 For a parameterised Cox, log normal sire frailty model given by
(26), there exists an equivalent animal model (with A a block diagonal matrix
given exactly as for the linear mixed model) - if and only if: �2s <

1
3e�2e .

The equivalent animal model is determined by � = e�, �2u + �2a + �2e = �2
eu +

�2s + �2
ee , �

2
u = �2

eu; �
2
a = 4�2s and �0 (�) = e�0 (�).

Proof: Having in mind the proof of identi�ability of parameters in the Cox
log normal animal frailty model, with time-dependent covariates (with associ-
ated random e�ects) (Theorem 28) and the proof of Theorem 22, then the proof
of this Theorem is straightforward.

7 Discussion and conclusion

In a series of models, namely the Gaussian mixed linear model, models for
binary and ordered categorical traits using a threshold model, Poisson mixed
models and survival models - necessary and suÆcient conditions for identi�a-
bility of parameters has been established in sire and in animal models. All of
the models considered are mixed models, where the mixture distribution (or
the logarithm of the mixture distribution) is the normal distribution. Only
in Gaussian mixed linear models, we have observations on the normally dis-
tributed scale. For binary and ordered categorical traits using a threshold
model, the observed value is uniquely determined by a grouping on the nor-
mally distributed scale, the liability scale. In Poisson mixed models we have
conditional on the outcome of the normally distributed random variable, ob-
servations from a Poisson distribution. In survival models, and conditional on
random e�ects, then log (�i (Tijrandom e�ects)) follows an extreme value dis-
tribution with mean �E and variance �2=6. In the same series of models, it
has been established that sire models without an error term at the normally
distributed level of the model, are inconsistent with assumptions of the additive
genetic in�nitesimal model. Under the assumption that the normally distributed
sire and error e�ects are independent, then �2s must be less than one third of
the variance of the normally distributed error term - for the model to be equiva-
lent to an animal model (with the normally distributed animal and error e�ects
independent).

Having obtained these results, then it is relatively easy to see that the results
generalise to e.g. sire-dam models and sire-maternal grandsire models, or other
models, where only a part of the additive genetic variance is accounted for by the
random e�ects included. Of course the condition for existence of an equivalent
animal model is a bit di�erent.

In the sire models considered, it was assumed that sires were unrelated,
this assumption can be relaxed with the consequence that the A-matrix in the
equivalent animal model has another structure.

In the discussion Foulley and Im (1993) suggested to include an error term in
models for traits following a Poisson sire model (without a normally distributed
error term) in order to �t the fraction (3/4) of the genetic variance that is not
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explicitly accounted for in the model. Ducrocq and Casella (1996) noted that
the sire model for survival data (without a normally distributed error term in log
frailty) does not account for the overdispersion implicitly created by the e�ect
representing three quarters of the total additive genetic variance. Nevertheless,
in practice sire models for survival data without the error term in log frailty,
have been frequently used - in the belief that they somehow were consistent
with assumptions of the additive genetic in�nitesimal model.

Elbers and Ridder (1982) showed identi�ability of the regression function,
the integrated baseline hazard, and the mixing distribution of individual frailties
in frailty models with non constant regression functions. They worked under the
assumption of mean one of frailty and a di�erentiable non constant regression
function and the proof was by contradiction. Without parametric assumptions
on the mixing distribution, nor on the integrated baseline hazard, then Kortram
et al. (1995) were able to recover, by constructive identi�cation, the regression
function, the integrated baseline hazard and the distribution of the individual
frailty term from the observed survival distribution. The assumption of a dif-
ferentiable regression function was relaxed, but still the regression function was
assumed to be non constant, and individual frailties were assumed to have mean
one. In this paper, we have assumed multivariate normality of log individual
frailties, frailties are correlated and log frailties have mean zero - we do not need
the assumption on non constant regression functions.
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9 Appendix

Let Ti be the random variable representing survival time of animal i. In the
frailty model, it is assumed that conditional on log frailty, Vi = vi, (or frailty)
the hazard function of animal i, is given by

�i (tjvi) = �0 (t) exp fx0i� + vig (27)

where �0 (t) is a common baseline hazard function, xi is a vector of time-
independent covariates of animal i, and � is the corresponding vector of re-
gression parameters. Furthermore, conditional on (Vi)i=1;:::;n, then all of the
T 0is are assumed to be independent. In the model speci�ed by (27), the condi-
tional integrated hazard function is

�i (tjvi) = �0 (t) exp fx0i� + vig
and the conditional survival function is

Si (tjvi) = exp f��i (tjvi)g
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Because Si (Tijvi) = exp f��i (Tijvi)g is uniformly distributed on the interval
(0; 1), the transformed random variable, Yi = �i (TijVi), conditional on Vi = vi,
is exponentially distributed with parameter 1. In turn, "i, the logarithm of Yi,
given by

"i = log (Yi) = log (�i (TijVi)) = log (�0 (Ti)) + x0i� + Vi (28)

conditional on Vi = vi, follows an extreme value distribution. By rearranging
terms in (28) it follows, that the model in (28), is equivalent to a linear model
on the log (�0 (�)) scale:

log (�0 (Ti)) = �x0i� � Vi + "i

The unconditional mean and variance of log (�0 (Ti)) are �x0i��E (Vi)�E and

V ar (Vi) +
�2

6 , respectively, where E is Euler's constant.
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