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Abstract

The large deviation modified likelihood ratio statistic is studied for

testing a variance component equal to a specified value. Formulas are

presented in the general balanced case, whereas in the unbalanced case

only the one-way random effects model is studied. Simulation studies

are presented, showing that the normal approximation to the large

deviation modified likelihood ratio statistic gives confidence intervals

for variance components with coverage probabilities very close to the

nominal confidence coefficient.
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1 Introduction

In this paper we consider the use of the large deviation modified likelihood
ratio test statistic for constructing confidence intervals for variance compo-
nents. As the title suggests, we consider extended variance component models
where the variance component is a covariance and as such can take negative
values, see section 2.1. Formally, the test statistic can be described as follows.
We consider a test of the hypothesis ψ = ψ0, where ψ is one-dimensional and
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where we have a nuisance parameter η. With l(ψ, η) denoting the log likeli-
hood function, the signed likelihood ratio statistic is

r = sign(ψ̃ − ψ0)

√

2
{

l(ψ̃, η̃)− l(ψ0, η̂)
}

,

where (ψ̃, η̃) is the maximum likelihood estimate under the full model and η̂
is the maximum likelihood estimate under the hypothesis ψ = ψ0. The large

deviation modified likelihood ratio statistic takes the form

rL = r +
1

r
log
(u

r

)

,

where u denotes a statistic. The statistic u cannot be described in simple
terms and can be quite difficult to derive. However, when the full model
corresponds to a full exponential family it is possible to give an explicit
formula for u. The modified statistic rL has been studied during the last two
decades and it has been realized that the modification to r not only improves
the normal approximation in the center of the distribution, but also that the
normal approximation has a small relative error in the tail of the distribution
(Barndorff-Nielsen, 1986; Jensen, 1995, 1997). In Jensen (1995) formulas for
calculating rL have been given for a number of tests and here we supplement
the list with classical test situations for variance component models. Since we
consider test situations where the distribution of the likelihood ratio statistics
depends on a nuisance parameter direct simulation of the distribution is not
so obvious and even less so when looking for confidence intervals.

Variance components are of great interest in many applied areas. Good
references both for the history and the state of the art of the subject are Searle
et al. (1992) and Cox and Solomon (2003). For a detailed presentation of
confidence intervals for variance components we refer to Burdick and Graybill
(1992). The aim in this article is to construct a confidence interval for a given
variance component, or equivalently to make a test for the hypothesis that it
has a given value. For the general balanced model the method by Ting et al.

(1990) is recommended by Burdick and Graybill (1992). For unbalanced
designs, a comparison of four different methods is made in Lee and Khuri
(2002), where it is demonstrated that two of the methods, the method in
Thomas and Hultquist (1978) and the method in Khuri (2002) in general
are superior to the others, and giving nearly identical results. For certain
ratios of variance components exact confidence intervals can be calculated
(see Burdick and Graybill, 1992), but ratios of variance components will not
be considered here.

In section 2 we consider the balanced case and state the formula for
rL in a general setup. The derivation of the formula is given in section 3.
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The unbalanced case is more difficult because there is no low-dimensional
sufficient statistic. To handle this case we introduce a conditioning argument
in section 4, thereby reducing the problem to one of the cases already treated.

In section 5 we present some simulation studies showing that for vari-
ance components, tests based on the modified statistics perform very well.
For comparison, we study the methods suggested in Ting et al. (1990) and
Thomas and Hultquist (1978).

2 Balanced random models

Tue Tjur (see Tjur, 1984) has identified a wide class of random effects models
with k variance components, σ2

i , i = 1, . . . , k, where the inference for the
variance components is based on a transformation of the data into k squared
norms SSi. These are independent and distributed as γiχ

2(fi), i = 1, . . . , k,
where the fis are the degrees of freedom, and the parameters γi are called
canonical variance components and are linear functions of the k variance
components. The simplest such case is the balanced one-way random model
which we treat first.

2.1 The balanced one-way random model

The traditional random effects model formulation for the jth observation in
the ith sample, Yij, is

Yij = µ+ Ui + Eij, i = 1, . . . , k, j = 1, . . . , m, (1)

where Ui ∼ N(0, δ), Eij ∼ N(0, σ2), and all these variables are independent.
The variance of Yij is δ+σ2 which explains the name variance components for
δ and σ2. The aim is to construct a confidence interval for δ or, equivalently,
to make a test of the hypothesis of a specified value of δ. We will base the
inference on the two independent statistics

SS1 =
∑

i,j

(yij − ȳi·)
2 ∼ γ1χ

2(f1), (2)

SS2 =
∑

i

m(ȳi· − ȳ··)
2 ∼ γ2χ

2(f2), (3)

with
γ1 = σ2, γ2 = σ2 +mδ, f1 = mk − k, f2 = k − 1, (4)

and ȳi· =
1

m

∑

j

yij, ȳ·· =
1

mk

∑

ij

yij.
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The ANOVA estimates of σ2 and δ are obtained by equating SS1 and SS2 to
their means and solving for σ2 and δ to give

σ̃2 = γ̃1 =
SS1

f1
, δ̃ =

1

m
(γ̃2 − γ̃1) =

1

m

(

SS2

f2
− SS1

f1

)

.

Clearly, the ANOVA estimate δ̃ of δ may be negative which is inconsistent
with the interpretation of δ as a variance. In order to circumvent this problem
we will model the variance component δ as a covariance, i.e. we will consider
the extended model where Yij is normal with mean µ and covariance

Cov(Yij, Yrs) =







δ + σ2 if i = r, j = s
δ if i = r, j 6= s
0 if i 6= r

. (5)

It is the same covariance structure as in model (1), except that in (5) δ is
not restricted to be positive. Consequently, SS1 and SS2 are independent
and, furthermore, distributed as described by (2), (3) and (4) but now the
domain of variation of (γ1, γ2) is R

2
+.

Under the hypothesis δ = δ0 the estimate γ̂1 is found by maximising the
function

h(γ1) = −SS1

γ1
− SS2

γ1 +mδ0
− f1 log(γ1)− f2 log(γ1 +mδ0),

which is twice the log likelihood function for γ1 based on SS1 and SS2 and
with δ fixed at δ0. The function h(γ1) is of the form in appendix A with
d1 = f1, d2 = f2, s1 = SS1, s2 = SS2, a = 1, and c = mδ0. The estimate of
γ2 under the hypothesis δ = δ0 is γ̂2 = γ̂1 + mδ0. The signed square root r
of the log likelihood ratio statistic can now be written

r = sign
(

δ̃ − δ0

)

×
{

f1

(

γ̃1

γ̂1
− 1

)

+ f1 log

(

γ̂1

γ̃1

)

+ f2

(

γ̃2

γ̂2
− 1

)

+ f2 log

(

γ̂2

γ̃2

)}1/2

.

The new test statistic is

rL = r +
1

r
log

u

r
with

u = sign
(

δ̃ − δ0

)

2
√

f1f2γ̃1γ̃2

∣

∣

∣

∣

(

1

2γ̃2
− 1

2γ̂2

)

γ̂2
2 −

(

1

2γ̃1
− 1

2γ̂1

)

γ̂2
1

∣

∣

∣

∣

(6)

×
{

2f1γ̂1(2γ̃1 − γ̂1)γ̂
4
2 + 2f2γ̂2(2γ̃2 − γ̂2)γ̂

4
1

}−1/2
,

and rL is approximately standard normal distributed. The derivation of u is
given in section 3.
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2.2 The general balanced case

In the general balanced case we have k independent statistics

SSi ∼ γiχ
2(fi), i = 1, . . . , k.

The domain of variation of (γ1, . . . , γk) is R
k
+ and the parameter of interest

is
δ = c1γ1 + c2γ2 + · · ·+ ckγk

with all the coefficients being non-zero. Note that the balanced random one-
way model is the special case with k = 2, c1 = −1/m and c2 = 1/m. An
example where k > 2 is considered in section 5 — a three-way random effects
model.

The estimates of the parameters γi in the full model are γ̃i = SSi/fi, and
the estimate of δ is

δ̃ =
k
∑

i=1

ciγ̃i =
k
∑

i=1

ciSSi/fi.

Under the hypothesis δ = δ0 we want to maximise the log-likelihood function,
which amounts to maximising the function

h(γ1, . . . , γk) = −
k
∑

i=1

SSi/γi −
k
∑

i=1

fi log(γi), subject to

k
∑

i=1

ciγi = δ0.

A method for obtaining the estimates γ̂1, . . . , γ̂k in this model is described in
appendix B.

The signed square root r of the log likelihood ratio statistic becomes

r = sign(δ̃ − δ0)

{

k
∑

i=1

(

fi

(

γ̃i
γ̂i
− 1

)

+ fi log

(

γ̂i
γ̃i

))

}1/2

.

The new test statistic is

rL = r +
1

r
log

u

r
where

u = sign (δ̃ − δ0)

(

k
∏

i=1

√

2fiγ̃i

) ∣

∣

∣

∣

∣

k
∑

i=1

(

1

2γ̃i
− 1

2γ̂i

)

ciγ̂
2
i

∣

∣

∣

∣

∣

×
{(

k
∏

i=1

di

)(

k
∑

i=1

c2i γ̂
4
i

di

)}−1/2

(7)

with
di = 2fiγ̂i(2γ̃i − γ̂i).

The derivation of u is given in section 3.
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3 The rL statistic for a full exponential family

In this section we describe the large deviation modified likelihood ratio statis-
tic rL for the case of a full exponential family. We then specialise to the case
of independent chi-squared distributed variables to obtain the results of sec-
tion 2. We use the formulation in Jensen (1997).

We consider an exponential family with minimal representation

dPθ
dν

(x) = exp{θ · t(x)− κ(θ)}, (8)

where θ and t(x) are k-dimensional, θ ∈ Θ with Θ an open subset of R
k.

In the following all vectors are row vectors. The mean value mapping is
τ(θ) = ∂κ

∂θ
(θ) and the variance function is V (θ) = ∂2κ

∂θ∂θT
(θ). Under the full

model the estimate θ̃ of θ is the solution to

τ(θ) = t(x).

Let ψ(θ) be a real valued function defined on Θ. We consider the hy-
pothesis ψ(θ) = ψ0 for some fixed value ψ0. Let η(θ) = ∂ψ

∂θ
(θ) and assume

that η(θ)k > 0 for all θ. The estimate of θ under the hypothesis ψ(θ) = ψ0

is denoted θ̂ and satisfies the equations

t(x)i − τ(θ)i − [t(x)k − τ(θ)k]
η(θ)i
η(θ)k

= 0, i = 1, . . . , k − 1.

The signed square root r of the log likelihood ratio statistic is

r =
√

2sign(ψ(θ̃)− ψ0)
{

(θ̃ − θ̂) · t(x)− κ(θ̃) + κ(θ̂)
}1/2

.

The large deviation modified likelihood ratio statistic is

rL = r +
1

r
log
(u

r

)

,

where from Jensen (1997) the statistic u is given by

u = sign(ψ(θ̃)− ψ0)
∣

∣

∣
V (θ̃)

∣

∣

∣

1/2

|D| |A|−1/2, (9)

with

D = (θ̃k − θ̂k) +
k−1
∑

i=1

(θ̃i − θ̂i)
η(θ̂)i

η(θ̂)k
, (10)
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and A is the (k − 1)× (k − 1) matrix with entries

Aij = V (θ̂)ij − V (θ̂)ik
η(θ̂)j

η(θ̂)k
−
(

V (θ̂)kj − V (θ̂)kk
η(θ̂)j

η(θ̂)k

)

η(θ̂)i

η(θ̂)k
(11)

+ (t(x)k − τ(θ̂)k)





∂ηi
∂θj

(θ̂)− ∂ηi
∂θk

(θ̂)
η(θ̂)j

η(θ̂)k

η(θ)k
−
η(θ̂)i

(

∂ηk
∂θj

(θ̂)− ∂ηk
∂θk

(θ̂)
η(θ̂)j

η(θ̂)k

)

η(θ̂)2
k



 .

An alternative formulation is obtained if instead of ψ(θ) = ψ0 we specify the
hypothesis as θk = φ(θ1, . . . , θk−1, ψ0) for some function φ. Using the relation

ψ(θ1, . . . , θk−1, φ(θ1, . . . , θk−1, ψ0)) = ψ0

we find
∂φ

∂θi
(θ̂, ψ0) = −

∂ψ
∂θi

(θ̂)
∂ψ
∂θk

(θ̂)
,

and

∂2φ

∂θi∂θj
(θ̂, ψ0)

=

− ∂2ψ
∂θi∂θj

(θ̂) + ∂2ψ
∂θi∂θk

(θ̂)
∂ψ
∂θi

(θ̂)

∂ψ
∂θk

(θ̂)

∂ψ
∂θk

(θ̂)
+

∂ψ
∂θi

(θ̂)

(

∂2ψ
∂θj∂θk

(θ̂)− ∂2ψ
∂θ2
k

(θ̂)
∂ψ
∂θj

(θ̂)

∂ψ
∂θk

(θ̂)

)

(

∂ψ
∂θk

(θ̂)
)2 .

Thus (10) can alternatively be written as

D = (θ̃k − θ̂k)−
k−1
∑

i=1

(θ̃i − θ̂i)
∂φ

∂θi
(θ̂, ψ0), (12)

and the matrix A from (11) is minus the second derivative of the log like-
lihood function with respect to (θ1, . . . , θk−1) under the hypothesis with
θk = φ(θ1, . . . , θk−1, ψ0) and is given by

Aij = V (θ̂)ij + V (θ̂)ik
∂φ

∂θj
(θ̂, ψ0) +

(

V (θ̂)kj + V (θ̂)kk
∂φ

∂θj
(θ̂, ψ0)

)

∂φ

∂θi
(θ̂, ψ0)

− (t(x)k − τ(θ̂)k)
∂2φ

∂θi∂θj
(θ̂, ψ0). (13)

The formulas given here are for distributions having a density with respect
to Lebesgue measure. If k = 1 we have D = θ̃ − θ and the term |A|−1/2 is
not present in the formula for u.
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Typically, the calculation of rL from the above formula will be difficult
when r is very close to zero. However, since we want to use rL in relation
to testing a hypothesis we are mainly interested in the case of large values
of |rL|. Thus, if for example |r| < 0.1 the actual value of rL will not be
important, since rL is close to r. In our implementation we defined rL = r
when |r| < 0.1. As mentioned in the introduction rL has a standard normal
distribution to a high accuracy.

We now describe two examples that will give the formulas used in the
previous section for variance component models.

Example 3.1 Let si, i = 1, . . . , k be independent with si having a scaled
chi-squared distribution with fi degrees of freedom. The joint density is

{

k
∏

i=1

s
fi/2−1
i

Γ(fi/2)

}

exp

{

−
k
∑

i=1

θisi +

k
∑

i=1

fi
2

log(θi)

}

.

This corresponds to the situation in (8) with κ (θ) = −∑k
i=1

fi
2

log (θi). The
mean and variance functions are

τ(θ)i = − fi
2θi

and V (θ)ij =

{

fi
2θ2i

i = j

0 i 6= j.

Under the full model the estimate θ̃ of θ is

θ̃i =
fi
2si

, i = 1, . . . , k.

We define

ψ(θ) =

k
∑

i=1

ci
2θi

,

where all the cis are non-zero, and consider the hypothesis ψ(θ) = ψ0. With
this choice of ψ(θ) we have

η(θ)i =
∂ψ

∂θi
(θ) = − ci

2θ2
i

and
∂ηi
∂θj

(θ) =

{

ci/θ
3
i i = j

0 i 6= j.

Under the hypothesis the estimate θ̂ of θ is the solution to

−si +
fi
2θi

−
(

−sk +
fk
2θk

)

ciθ
2
k

ckθ2
i

= 0, i = 1, . . . , k − 1, ψ(θ) = ψ0. (14)

8



The terms entering u in (9) are

|V (θ̃)| =
k
∏

i=1

2s2
i

fi
,

D = (
fk
2sk

− θ̂k) +

k−1
∑

i=1

(
fi
2si

− θ̂i)
ciθ̂

2
k

ckθ̂2
i

=
1

bk

k
∑

i=1

(

fi
2si

− θ̂i

)

bi, (15)

where bi = ci/θ̂
2
i , and defining

di =
fi

2θ̂2
i

+

(

sk −
fk

2θ̂k

)

2ciθ̂
2
k

ckθ̂
3
i

=
fi

2θ̂2
i

+
2

θ̂i

(

si −
fi

2θ̂i

)

=
1

θ̂i

(

2si −
fi

2θ̂i

)

and

ak =
fkθ̂

2
k

2c2k
+

(

sk −
fk

2θ̂k

)

2θ̂3
k

c2k
=
dk
b2k
,

we find

Aij =

{

akbibj i 6= j
di + akb

2
i i = j.

(16)

The determinant of A is then found to be

|A| =
(

1 + ak

k−1
∑

i=1

b2i
di

)

k−1
∏

i=1

di =

(

k
∑

i=1

b2i
dib

2
k

)

k
∏

i=1

di. (17)

Writing γ̂i = 1/(2θ̂i) we obtain the formula (7) for the general balanced
model in section 2.

Example 3.2 In the special case of Example 3.1 with k = 2 the estimate
θ̂ is the solution to

−s1 +
f1

2θ1
−
(

−s2 +
f2

2θ2

)

c1θ
2
2

c2θ2
1

= 0,
c1
2θ1

+
c2
2θ2

= ψ0.

From (15) and (17) we find the expression for u from (9) to be

u = sign

(

c1s1

f1
+
c2s2

f2
− ψ0

)

2s1s2√
f1f2

∣

∣

∣

∣

∣

(

f2

2s2
− θ̂2

)

c2

θ̂2
2

+

(

f1

2s1
− θ̂1

)

c1

θ̂2
1

∣

∣

∣

∣

∣

×
{

1

θ̂1

(

2s1 −
f1

2θ̂1

)

c22

θ̂4
2

+
1

θ̂2

(

2s2 −
f2

2θ̂2

)

c21

θ̂4
1

}−1/2

(18)

Taking c2 = −c1 = 1/m and writing δ0 = ψ0, γ̂1 = 1/(2θ̂1), and γ̂2 =
1/(2θ̂2) = γ̂1 + mδ0 we get from (18) the expression (6) for the balanced
one-way analysis of variance.
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4 The unbalanced one-way random model

In many applications the number of observations in each group are not equal.
The model we consider is as in (1) except now j = 1, . . . , ni. The inference
on the variance parameters σ2 and δ should be based on

SS1 =
∑

i,j

(yij − ȳi·)
2 ∼ σ2χ2(n− k), (19)

and on
vi = ȳi· − ȳ··, i = 1, . . . , k,

where n = n1 + · · · + nk, ȳi· =
∑

j yij/ni, and ȳ·· =
∑

ij yij/n =
∑

i niȳi·/n,
and where SS1 and (v1, . . . , vk) are independent. Contrary to the balanced
case we do not, however, have a sufficient reduction of the statistics v1, . . . , vk
to the squared norm

SS2 =
∑

i

ni(ȳi· − ȳ··)
2 =

∑

i

niv
2
i ,

and the latter is not chi-squared distributed. Transforming the density of
(ȳ1·, . . . , ȳk·) to (v1, . . . , vk−1, ȳ) and integrating with respect to ȳ·· we find
that the marginal density of (v1, . . . , vk−1) is

√

2π
∑k

i=1 1/ωi

n

nk

(

k
∏

i=1

1√
2πωi

)

exp

{

−1

2

k
∑

i=1

v2
i /ωi +

1

2

(
∑k

i=1 vi/ωi)
2

∑k
i=1 1/ωi

}

,

(20)
where

ωi = δ + σ2/ni.

This is an exponential family where the order of the family increases with
the number k of groups. The methodology based on the large deviation
modified likelihood ratio statistic outlined in section 3 is therefore not directly
applicable.

To get back to the situation of section 3 we condition on the statistics

zi = vi/
√

SS2, i = 1, . . . , k − 1.

These are not exactly ancillary, but we take here a pragmatic view and
condition on the zis in order to reduce the dimension of the problem. If we
transform the density (20) to the density of (z1, . . . , zk−1, SS2) we find that
the conditional density of SS2 given (z1, . . . , zk−1) is

(Q/2)(k−1)/2

Γ((k − 1)/2)
SS

(k−3)/2
2 exp{−QSS2/2}, (21)
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with

Q =
k
∑

1

z2
i /ωi −

(

k
∑

1

zi/ωi

)2( k
∑

1

1/ωi

)−1

.

The independence of SS1 and (v1, . . . , vk) implies that SS1 and SS2 are
independent given the zis, and from (19) and (21) we see that they both
have a scaled chi-squared distribution. Thus we can use the general results
of section 3. Since

∑k
1 nizi = 0 and

∑k
1 niz

2
i = 1 we find thatQ = (σ2+mδ)−1

if ni = m for all i, and we are back to the situation from the balanced case
as seen from (2) and (3). Similarly, if we consider the limit ni → ∞ with
ni/m→ 1 for all i then we again have Q ∼ (σ2 +mδ)−1. If we rewrite Q as
Q =

∑k
1(1/ωi)(zi − q/t)2 with q =

∑k
1 zi/ωi and t =

∑k
1 1/ωi we find that

∂Q/∂δ = −∑k
1(1/ω

2
i )(zi − q/t)2. This shows that for a fixed value of σ2,

Q is a monotonic function of δ making it possible to base the inference on
the conditional distribution given the zis. Also, it is possible to show that
the variance of the maximum likelihood estimate under the full model δ̂ is of
order 1/(k−1) irrespectively of the value of the z vector. The argument is as
follows. For a fixed value of σ2 the estimate δ̂ is a function of Q0SS2/(k−1),
where Q0 = Q(δ0) with δ0 the true value of δ. The latter statistic has variance
1/(k − 1) and using the general delta method we find that the variance of
δ̂ is of order [Q0/

∂Q
∂δ

(δ0)]
2/(k − 1). Finally, from the formulae for Q and

∂Q
∂δ

we find trivially that there exist constants 0 < c1 < c2 < ∞ such that

c1 ≤ |Q/∂Q
∂δ
| ≤ c2 for (δ, σ2) in a neighbourhood of their true value. Together,

the above mentioned properties show that the conditional approach makes
the situation very similar to the balanced case.

To use the results from section 3 we define

f1 = n− k, f2 = k − 1, θ1 =
1

2σ2
, θ2 =

Q

2
,

and

φ(θ1, δ) =
Q

2
=

1

2

k
∑

i=1

1

ωi

(

zi −
q

t

)2

,

where

ωi = δ +
1

2niθ1
, q =

k
∑

i=1

zi
ωi

and t =
k
∑

i=1

1

ωi
.

The maximum likelihood estimate in the full model is

θ̃1 =
f1

2SS1

, θ̃2 =
f2

2SS2

,

11



and the estimate θ̂1 under the hypothesis δ = δ0 or θ2 = φ(θ1, δ0) is the
solution to the likelihood equation

−SS1 +
f1

2θ1
+

(

−SS2 +
f2

2φ(θ1, δ0)

)

∂φ

∂θ1
(θ1, δ0) = 0. (22)

The estimate δ̃ of δ in the full model is the solution to φ(θ̃1, δ) = f2/(2SS2)
and must be found by numerical methods. We note from (24) below that
since φ(θ̃1, δ) is a decreasing function of δ the sign of δ̃ − δ0 is the same as
the sign of φ(θ̃1, δ0)− f2/(2SS2).

Using the notation θ̂2 = φ(θ̂1, δ0) the signed square root r of the log
likelihood ratio statistic becomes

r = sign
(

φ(θ̃1, δ0)− θ̃2

)

×
{

f1 log

(

θ̃1

θ̂1

)

+ f1

(

θ̂1

θ̃1
− 1

)

+ f2 log

(

θ̃2

θ̂2

)

+ f2

(

θ̂2

θ̃2
− 1

)}1/2

.

The new test statistic is

rL = r +
1

r
log

u

r
where u is calculated from (9), (12), and (13),

u = sign
(

φ(θ̃1, δ0)− θ̃2

)

√
f1f2

2θ̃1θ̃2

∣

∣

∣

∣

θ̃2 − θ̂2 −
(

θ̃1 − θ̂1

) ∂φ

∂θ1
(θ̂1, δ0)

∣

∣

∣

∣

×
{

f1

2θ̂2
1

+
f2

2θ̂2
2

∂φ

∂θ1
(θ̂1, δ0)

2 −
(

f2

2θ̂2
2

− SS2

)

∂2φ

∂θ2
1

(θ̂1, δ0)

}−1/2

.

The derivatives of φ(θ1, δ) are

∂φ

∂θ1
(θ1, δ) =

k
∑

i=1

1

4niθ12ω2
i

(

zi −
q

t

)2

, (23)

∂φ

∂δ
(θ1, δ) = −

k
∑

i=1

1

2ω2
i

(

zi −
q

t

)2

, (24)

and

∂2φ

∂θ2
1

(θ1, δ) = −
k
∑

i=1

1

2niθ3
1ω

3
i

(

zi −
q

t

)2

−
{

k
∑

i=1

1

2niθ2
1ω

2
i

(

zi −
q

t

)

}

, (25)

and where (23) and (25) are used in the calculation of u.
The solution θ̂1 to (22) must be found by a numerical search. We start the

iterative search at θ̃1 and use the Newton-Raphson method if the observed
information is positive and the Fisher scoring method otherwise.
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5 Simulation studies

In this section we will report the main results of some simulations studies.
Recall first the connection between tests and confidence intervals. Given

a test of a simple hypothesis for a parameter, a confidence interval for that
parameter with a nominal confidence coefficient of 1-α is obtained as the set of
values of the parameter that would be accepted if used as null hypothesis and
tested on level α. Conversely a procedure for constructing a 1-α confidence
interval leads to a level α test which rejects the null hypothesis of a fixed value
of the parameter if that value does not belong to the confidence interval.

In the simulations we have decided to formulate the results in terms of
the tests, i.e. we give the observed levels of the tests when the nominal level
is 5%. Since the signed likelihood ratio test r as well as its modification rL
are supposed to be symmetric we have recorded the frequency with which
the tests reject the hypothesis in the upper and in the lower tail of the
approximating normal distribution.

The results are easily translated to confidence intervals. The frequency
with which the test rejects the null hypothesis in the lower tail is the fre-
quency with which the confidence interval is entirely below the true value,
and similarly the frequency with which the test rejects the null hypothesis in
the upper tail is the frequency with which the confidence interval is entirely
above the true value. The nominal confidence coefficient of a confidence in-
terval is one minus the nominal level of the corresponding test and similarly
the coverage probability of a confidence interval is one minus the observed
level of the corresponding test. We are only investigating coverage of confi-
dence intervals, and other measures such as the average length of intervals
have not been considered.

For each simulated data set we have calculated the likelihood ratio statis-
tics r and the modified statistics rL for the hypothesis that δ equals the true
value. For comparison, we have calculated an approximate 95% confidence
interval for δ using methods suggested in Ting et al. (1990) for balanced
random effects models and Thomas and Hultquist (1978) for the unbalanced
one-way random model. We have then observed how often r and rL were
above 1.96 and how often the lower limit of the confidence interval was above

the true value of δ, i.e. how often the three methods will reject the true
hypothesis because the estimate is large. Similarly we observed how often
r and rL were below −1.96 and how often the upper limit of the confidence
interval was below the true value of δ, i.e. how often the three methods will
reject the true hypothesis because the estimate is small. Finally, we observed
how often r and rL were outside the interval −1.96 to 1.96 and how often the
true value of δ was outside the confidence interval. Thus we have determined
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how often the three tests will reject the true hypothesis, in other words we
have determined the levels of the three tests.
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Figure 1: Balanced one-way random effects model with 5 groups and 2 repli-
cations within groups. Comparison of r, rL, and the test based on the con-
fidence intervals calculated according to Ting et al. (1990) based on 100000
simulations. Top plot: percentage of simulations with r above 1.96, rL above
1.96, and lower limit of the confidence interval above the true value of δ.
Middle plot: percentage of simulations with r below −1.96, rL below −1.96,
and upper limit of the confidence interval below the true value of δ. Bottom
plot: percentage of simulations with r outside ±1.96, rL outside ±1.96, and
the true value of δ outside the confidence interval. In all three plots the
dotted line shows the stated level of the tests.

Figure 1 shows the results for a balanced one-way random model with 5

14



groups and 2 replications within groups. The within group variance was set
to 1 and the parameter of interest, the between group variance component,
varies in the range from 0 to 4. The confidence interval was calculated using
the method suggested in Ting et al. (1990). It is seen that the likelihood ratio
statistics r is too often below −1.96 and too seldom above 1.96 compared
to the stipulated level of 2.5%. Combining the tails one finds that the level
of r is close to 6% rather than the stipulated 5%. The only exception is
when δ is close to 0. The modified likelihood ratio statistics has both one-
and two-sided levels very close to the stated levels. The test based on the
confidence interval has observed one-sided and two-sided levels a bit further
from the nominal levels than rL but much closer to the nominal levels than
r.
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Figure 2: Balanced one-way random effects models with 5 groups and 2
replications within groups, δ = 0.4. Left plot: rL and lower limit of the
confidence interval. Right plot: rL and upper limit of the confidence interval.
Confidence intervals calculated according to Ting et al. (1990). Based on
1000 simulations.
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As the curves for rL and the test based on the confidence interval follow
each other one could suspect that the two methods give almost comparable
results for a specific data set. To investigate this we have in Figure 2 plotted
the values of rL against the lower and upper limits of the confidence interval,
respectively (δ = 0.4, 1000 simulations). In the left plot it is seen that in
21 out of the 1000 simulations both methods rejected the true value, based
on a one-sided test, while they only disagreed on 4 data sets. Similar results
are found when considering the upper limit and small values of rL, see the
right plot. Based on this and other simulation studies for varying values of
δ as well as varying number of groups and observations within groups the
conclusion is that rL and the method suggested by Ting et al. (1990) do in
practice give comparable conclusions.

Figure 3 shows the results with 10 groups and 10 replications within
groups. We see that with this increased sample size the performance of r
is still poor, while rL and the confidence interval have true levels extremely
close to the stated levels. The method suggested by Ting et al. (1990) here
gives results indistinguishable from rL.

As an example of a general balanced model we have considered the three-
way model involving P persons, D drugs and T timepoints

Ypdt = µdt + Up + Vpd +Wpt +Epdt p = 1, . . . , P ; d = 1, . . . , D; t = 1, . . . , T,
(26)

where Up, Vpd,Wpt and Epdt are independent normal random components with
means zero and variances δ, σ2

V , σ
2
W and σ2

E , respectively. The associated sums
of squares are

SS1 =
∑

pdt

(ypdt − ȳpd· − ȳp·t − ȳ·dt + ȳp·· + ȳ·d· + ȳ··t − ȳ···)
2 ,

SS2 =
∑

pd

T (ȳpd· − ȳp·· − ȳ·d· + ȳ···)
2 ,

SS3 =
∑

pt

D (ȳp·t − ȳp·· − ȳ··t + ȳ···)
2 ,

SS4 =
∑

p

DT (ȳp·· − ȳ···)
2 .

These are independent and γiχ
2 (fi)-distributed, where

γ1 = σ2
E , f1 = (P − 1) (D − 1) (T − 1) ,

γ2 = σ2
E + Tσ2

V , f2 = (P − 1) (D − 1) ,

γ3 = σ2
E +Dσ2

W , f3 = (P − 1) (T − 1) ,

γ4 = σ2
E + Tσ2

V +Dσ2
W +DTδ, f4 = (P − 1) .

16



0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

 above

1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

below

3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

 outside

delta

r
r large deviation
Ting et al.

Figure 3: Balanced one-way random effects model with 10 groups and 10
replications within groups. Comparison of r, rL and the test based on the con-
fidence intervals calculated according to Ting et al. (1990) based on 100000
simulations. The results for the method suggested by Ting et al. (1990) are
indistinguishable from the results for rL and are therefore not visible in the
plots. See Figure 1 for an explanation of the three plots.

Note that the random effect formulation in (26) imply that 0 < γ1 <
γ2 < γ4 and 0 < γ1 < γ3 < γ4. But as in section 2.1 we consider the
extended model where (γ1, γ2, γ3, γ4) vary freely in R

4
+. Hence the parameter

of interest δ is given as the following linear combination of the canonical
variance components:

δ = [γ4 − γ2 − γ3 + γ1] / (DT ) .
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In the simulations the parameters σ2
V , σ2

W and σ2
E were set to 1.

Figure 4 illustrates the result when P = 4, D = 2 and T = 8. Again the
performance of r is poor, while rL has true levels very close to the stated
levels. The test based on the confidence interval has observed one-sided and
two-sided levels a bit further from the nominal levels than rL but much closer
to the nominal levels than r except when δ < 0.5. In particular the observed
upper level of the test based on the confidence interval is too small compared
to the nominal level. Other choices of P , D and T gave comparable results.
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Figure 4: Three-way random effects model with P = 4, D = 2 and T = 8.
Comparison of r, rL and the test based on the confidence intervals calculated
according to Ting et al. (1990) based on 100000 simulations. See Figure 1
for an explanation of the three plots.

Figure 5 shows the results for an unbalanced one-way random model with
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6 groups and group sizes 2, 5, 5, 7, 7, and 9, respectively. Here we have used
the method from Thomas and Hultquist (1978) for the confidence intervals.
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Figure 5: Unbalanced one-way random effects model with group sizes
2, 5, 5, 7, 7 and 9. Comparison of r, rL and the test based on the confi-
dence intervals calculated according to Thomas and Hultquist (1978) based
on 100000 simulations. See Figure 1 for an explanation of the three plots.

Figure 6 summarises the result for the situation with 3 groups and group
sizes 2, 10, and 100, respectively.

The likelihood ratio statistic r has again observed levels rather far from
the stated level. The rL statistic have observed levels very close to the stated
level, one-sided as well as two-sided. The upper and lower bounds from
the Thomas and Hultquist-method have observed coverage probabilities very
close to the nominal confidence coefficients, when δ0 is not too close to 0.
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Figure 6: Comparison of r, rL and the test based on the confidence inter-
vals calculated according to Thomas and Hultquist (1978) based on 100000
simulations. See Figure 1 for an explanation of the three plots.

But when δ0 is close to 0 this method has observed coverage probabilities
much larger than the nominal confidence coefficients. For the Thomas and
Hultquist-method similar observations were made in Lee and Khuri (2002).

6 Conclusion

Based on the simulations presented above and other simulation studies it
is evident that for small samples inference concerning variance components
should not be based on the signed likelihood ratio statistics. On the other
hand, our simulations show that the large deviation modified likelihood ratio
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statistic produces tests and hence 95%-confidence limits with true levels very
close to the stated levels. For balanced models, confidence intervals based on
Ting et al. (1990) performed almost as well. For unbalanced one-way random
effects models, confidence intervals based on rL clearly performs better than
the confidence intervals based on Thomas and Hultquist (1978) for small
values for the variance component of interest. Furthermore, the formulas for
the large deviation modified likelihood ratio statistic presented here are easily
implemented; some R functions for the general balanced case are available
on request.

The balanced case was handled in general using that the sum of squares
statistics are independent with a scaled chi-squared distribution. In the un-
balanced case we have only considered the one-way random model, where
one of the sum of squares statistics is no longer chi-squared distributed. To
overcome this problem a conditional argument is used: conditioning on a set
of standardised group means the distribution of the sum of squares statistic
is turned into a scaled chi-squared distribution. This conditioning idea may
also be useful for constructing formulas in more general unbalanced cases,
but we have not pursued this idea here.

Appendices

Appendix A

Let ψ(γ) = aγ + c with the range of γ being






γ > 0 if a > 0, c ≥ 0
γ > −c/a if a > 0, c < 0
0 < γ < −c/a if a < 0, c > 0.

We want to maximise

l(γ) = −s1

γ
− d1 log(γ)− s2

ψ(γ)
− d2 log(ψ(γ)),

where s1 > 0, s2 > 0, d1 > 0, and d2 > 0. Let us note that the function
tends to minus infinity when γ tends to the boundary of its range, so that
the maximum is always attained. To find the maximum we want to solve

0 =
s1

γ2
− d1

γ
+

[

s2

ψ(γ)2
− d2

ψ(γ)

]

a,

which is equivalent to solving the cubic equation

−[d1 + d2]a
2γ3 + [s1a

2 + s2a− (2d1 + d2)ac]γ
2 + [2s1ac− d1c

2]γ + s1c
2 = 0.
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The real solutions to the cubic equations must be checked for consistency
with the definition of the range of γ and then γ̂ is found by evaluating l at
the solutions.

Appendix B

Here we consider the maximisation of

k
∑

i=1

{

−SSi
γi

− fi log(γi)

}

subject to

k
∑

i=1

ciγi = δ0, (27)

where δ0 is fixed, all cis are non-zero, and all SSis are positive. Using a
Lagrange multiplier we consider the function

k
∑

i=1

{

−SSi
γi

− fi log(γi)

}

+ λ(
k
∑

i=1

ciγi − δ0).

Setting the derivative with respect to γi equal to zero we find

γi(λ) =

{

γ−i (λ) if λci < 0,
γ−i (λ) or γ+

i (λ) if λci > 0,

where

γ−i (λ) =
fi −

√

f 2
i − 4λciSSi
2λci

, γ+
i (λ) =

fi +
√

f 2
i − 4λciSSi
2λci

.

To study these solutions we define ωi = 4ciSSi/f
2
i , i = 1, . . . , k, and assume

that these values have been ordered so that ω1 > ω2 > · · · > ων > 0 > ων+1 >
· · · > ωk, with ν = k when ci > 0 for all i. The range of λ in the solutions
γi(λ) and γ+

i (λ) is given by the requirements f 2
i −4λciSSi = f 2

i (1−λωi) > 0
for all i. With the ordering of ωi this gives λ2 < λ < λ1, where λ1 = ω−1

1 . If
k > ν the value of λ2 is ω−1

k , and if k = ν the value of λ2 is −∞. Since

ci(γ
−
i )′(λ) =

c2i
√

f 2
i (1− λωi)

(γ−i )2, and ci(γ
+
i )′(λ) =

−c2i
√

f 2
i (1− λωi)

(γ+
i )2,

we see that ciγ
−
i (λ) is increasing and ciγ

+
i (λ) is decreasing. Furthermore,

γ+
i (λ) →∞ for λ→ 0 and λci > 0.
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Define now

δ−(λ) =
k
∑

i=1

ciγ
−
i (λ),

δ1(λ) = c1γ
+
1 (λ) +

k
∑

i=2

ciγ
−
i (λ),

δ2(λ) =

{
∑k−1

i=1 ciγ
−
i (λ) + ckγ

+
k (λ) if k > ν

δ−(λ) if k = ν.

Then δ− is an increasing function,

δ−(λ1) = δ1(λ1) and δ1(λ) →∞ for λց 0,

and if k > ν

δ−(λ2) = δ2(λ2) and δ2(λ) → −∞ for λր 0,

and finally if k = ν
δ−(λ) → 0 for λ→ −∞.

These observations show that we can always find a value λ̂ of λ satisfying







δ−(λ) = δ0 if δ−(λ2) ≤ δ0 ≤ δ−(λ1)
δ1(λ) = δ0, λ > 0 if δ0 > δ−(λ1)
δ2(λ) = δ0, λ < 0 if δ0 < δ−(λ2).

The solution to any one of these equations can be found simply doing a
bisection search. Let γ̂0

i be the corresponding value of γi used in deriving λ̂.
Test cases show that in the majority of cases the above procedure will

give the maximum likelihood estimates. To capture the remaining cases we
use γ̂0 as the initial estimate for a second search procedure. If we fix all
but two of the variables in (27) the maximisation problem is as in appendix
A. We therefore iteratively fix all but variables i and j, 1 ≤ i 6= j ≤ k,
and maximise with respect to γi, γj. We continue with this procedure until
convergence. When using appendix A we take

d1 = fi, d2 = fj , s1 = SSi, s2 = SSj ,

a = − ci
cj

and c =
δ0 −

∑

l /∈{i,j} clγl

cj
,

where γl is the present value in the search.
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To check that we have reached a maximum we must show that the (k −
1) × (k − 1) matrix A given by (16) is positive definite. This is the case if
and only if

(

1 + ak

r
∑

i=1

b2i
di

)

r
∏

i=1

di > 0, r = 1, . . . , k − 1.
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