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1 Introduction

The evolution of homologous DNA sequences can be described by continuous time
Markov chains on a phylogenetic tree. A continuous time Markov chain is char-
acterized by a substitution rate matrix, and the phylogenetic tree summarizes the
relationship between the species in terms of branch lengths (time before divergence)
and common ancestors. The DNA sequences are only observed at the tip of the
leaves, and information on substitution events (time and type) and branch lengths
are missing.

The EM algorithm (Dempster, Laird and Rubin, 1977) is useful in situations
where finding the maximum likelihood estimate based on the full data is analytically
tractable, but solving the problem based on the observed data is more complicated.
Holmes and Rubin (2002) and Yap and Speed (2004) describe the EM algorithm
for estimating unconstrained reversible substitution rate matrices from homologous
DNA sequences. Here we consider general substitution rate matrices so that we
may have constraints, and the substitution process need not be reversible. We draw
attention to variance estimation and use established statistical theory to derive
expressions for the information matrix. In case of a reversible substitution process
we provide closed-form solutions.

The paper is organized as follows. In Section 2 we describe the maximum like-
lihood (ML) problem and the EM algorithm. The E-step is a matter of calculating
conditional expectations of the log-likelihood based on the full data. Section 3 de-
scribes how to estimate the information matrix from conditional expectations of the
gradient and curvature of the full likelihood score. Details in the derivation are pro-
vided in Appendix A. In Section 4 we consider continuous time Markov processes and
calculate the conditional expressions needed for the E-step and information matrix.
In Appendix B we assume a reversible substitution process and provide analyti-
cal solutions of the conditional expressions. In Section 5 we consider evolutionary
models of DNA sequences related by a phylogenetic tree.

2 The ML problem and the EM algorithm

We denote the full data by x and observed data by y = y(x). The parameter of
interest is a vector θ. The full likelihood of θ based on x is denoted by L(θ; x), and
the marginal likelihood of θ based on y is denoted by

L(θ; y) = L(θ; x)/L(θ; x|y). (1)

The EM algorithm is attractive in situations where finding the maximum likeli-
hood estimate (MLE) θ̂ based on the full data is analytically tractable, but finding
the MLE based on the observed data is a more complicated problem. The algorithm
is an iterative procedure. In the E-step the function

G(θ; θ0) = Eθ0 [log L(θ; x)|y] (2)

is calculated, and in the M-step a new parameter value θ1 is obtained as the value
of θ that maximizes G(θ; θ0). The algorithm converges to a local maximum θ̂ of
L(θ; y).
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3 Estimating the information

3.1 General case

Following Louis (1982) we let

S(θ; x) =
∂ log L(θ; x)

∂θ
and I(θ; x) = −∂2 log L(θ; x)

∂θ∂θ∗

be the likelihood score and information matrix based on the full likelihood. As is
shown in Appendix A the information matrix based on the observed data y is given
by

I(θ; y) = Eθ[I(θ; x)|y] − Vθ[S(θ; x)|y], (3)

where

Vθ[S(θ; x)|y] = Eθ[S(θ; x)S∗(θ; x)|y] − Eθ[S(θ; x)|y] Eθ[S(θ; x)|y]∗

is the conditional variance of the full likelihood score. Thus the information matrix
based on data y can be computed from the conditional expectations of the gradient
and curvature of the full likelihood score.

3.2 Independence case

When x1, . . . , xn are independent and yi(x) = yi(xi), the function G(θ; θ0), the full
likelihood score S(θ; x) and the full data information matrix I(θ; x) become sums
and

I(θ; y) =
n∑

i=1

Eθ[Ii(θ; xi)|yi] −
n∑

i=1

Vθ[Si(θ; xi)|yi].

If x1, . . . , xn are also identically distributed it is useful to arrange the terms into
classes determined by the value of yi. Indicating the class by a ∈ C and letting ν(a)
be the number of terms in class a we get

G(θ; θ0) =
∑
a∈C

ν(a) Eθ0 [log L(θ; xa)|ya], (4)

and we also find

I(θ; y) =
∑
a∈C

ν(a)
(
Eθ[Ia(θ; xa)|ya] − Vθ[Sa(θ; xa)|ya]

)
. (5)

4 Continuous time Markov chains

4.1 Likelihood

We consider a continuous time Markov chain {X(t)}t∈[0,T ] on a finite state space
of size m with rate matrix Q conditioned on the initial value X0. We only observe
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Y = y(X) = XT . The rate matrix is parameterized by θ and the full likelihood from
a complete observation of the Markov chain is given by

L(θ; {x(t)}t∈[0,T ]) =
m∏

a=1

eT (a)Qθ(a,a)

m∏
a=1

∏
b6=a

Qθ(a, b)N(a,b),

where T (a) is the total time spent in state a and N(a, b) is the number of substitu-
tions of a with b. Thus the sufficient statistics R is a m2-dimensional vector given
by the total time spent in a state and the number of substitutions between states

R =
(
T (1), . . . , T (m), N(1, 2), . . . , N(m,m − 1)

)∗
. (6)

The full log-likelihood becomes

log L(θ; R) =
m∑

a=1

T (a)Qθ(a, a) +
m∑

a=1

∑
b6=a

N(a, b) log Qθ(a, b) = q(θ)∗R,

where

q(θ) =
(
Qθ(1, 1), Qθ(2, 2), . . . , Qθ(m, m), log Qθ(1, 2), . . . , log Qθ(m, m − 1)

)∗
,

and where Qθ(a, a) = −
∑

b6=a Qθ(a, b). The function G(θ; θ0) in (2) is now given by

G(θ, θ0) = Eθ0 [q(θ)
∗R|x0, xT ] = q(θ)∗ Eθ0 [R|x0, xT ], (7)

and we need to calculate the conditional means of the sufficient statistics.
In order to calculate the observed data information matrix (3) we find that

Eθ0 [S(θ; x)|x0, xT ] =
∂q(θ)∗

∂θ
Eθ0 [R|x0, xT ], (8)

Eθ0 [I(θ; x)|x0, xT ] = −
m2∑
k=1

∂2qk(θ)

∂θ∂θ∗
Eθ0 [Rk|x0, xT ], (9)

where qk(θ) and Rk are coordinates of q(θ) and R, and

Eθ0 [S(θ, x)S∗(θ, x)|x0, xT ] =
∂q(θ)∗

∂θ
Eθ0 [RR∗|x0, xT ]

∂q(θ)

∂θ∗
, (10)

and so we also need to calculate the conditional variances and covariances of the suf-
ficient statistics. In the next subsection we describe how to calculate the conditional
means, variances and covariances of the sufficient statistics.

4.2 Conditional means, variances and covariances of the
sufficient statistics

In order to calculate G(θ; θ0) and the information matrix based on the observed data
we need the conditional means, variances and covariances of the sufficient statistics.
These are given by the following Theorem. The statements in the Theorem are
conditional versions of Proposition 3.6-3.8 in Guttorp (1995) and can be shown
using similar techniques as in that book.
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Theorem (Conditional means, variances and covariances).

We have the following conditional means:

• Time spent in state j

E[T (j)|X0 = a, XT = b] =

∫ T

0

Paj(t)Pjb(T − t) dt/Pab(T ).

• Number of transitions between states j and k

E[N(j, k)|X0 = a, XT = b] = Q(j, k)

∫ T

0

Paj(t)Pkb(T − t) dt/Pab(T ).

• Product of two times

E
[
T (j)T (k)|X0 = a, XT = b

]
=∫ T

0

∫ t

0

[
Paj(u)Pjk(t − u)Pkb(T − t)

+ Pak(u)Pkj(t − u)Pjb(T − t)
]
du dt/Pab(T ).

• Product of two number of transitions

E
[
N(j1, k1)N(j2, k2)|X0 = a, XT = b

]
={

1((j1, k1) = (j2, k2)) · Q(j1, k1)

∫ T

0

Paj1(t)Pk1b(T − t) dt

+ Q(j1, k1)Q(j2, k2)

∫ t=T

t=0

∫ u=t

u=0

[
Paj1(u)Pk1j2(t − u)Pk2b(T − t)

+ Paj2(u)Pk2j1(t − u)Pk1b(T − t)
]
du dt

}
/Pab(T ).

• Product of time and number of transitions

E[N(j, k)T (l)|X0 = a, XT = b] =

Q(j, k)

∫ T

0

∫ t

0

[
Paj(u)Pkl(t − u)Plb(T − t)

+ Pal(u)Plj(t − u)Pkb(T − t)
]
du dt/Pab(T ).

In the case of a reversible process, the integrals in the Theorem can be written
in closed form, as shown in Appendix B.

5 Models of DNA sequence evolution

5.1 Pairwise sequences

We consider data from Felsenstein (2004) page 207 where the evolution of n = 500
sites of two homologous DNA sequences are summarized in the frequency table ν
given by Table 1.
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A G C T total

A 93 13 3 3 112

G 10 105 3 4 122

C 6 4 113 18 141

T 7 4 21 93 125

total 116 126 140 118 500

Table 1: Pairs of nucleotides for 500 sites.

5.1.1 Example: Kimura model

The Kimura (1980) model has rate matrix

Q = Qα,β =


−α − 2β α β β

α −α − 2β β β

β β −α − 2β α

β β α −α − 2β

 .

The model is reversible with uniform stationary distribution π = (1/4, 1/4, 1/4, 1/4).
We let T = 1 and for a single site we get the full log-likelihood

log L(α, β; R) = q(α, β)∗R,

where R is given by (6) and

q(α, β)∗ = (−α − 2β, . . . ,−α − 2β︸ ︷︷ ︸
length 4

, log α, log β, . . . , log α︸ ︷︷ ︸
length 12

).

From (4) we get

G(α, β; α0, β0) = q(α, β)∗
∑

a

∑
b

ν(a, b) Eα0,β0 [R|x0 = a, xT = b].

The conditional means of the sufficient statistics are given by the Theorem in Sec-
tion 4.2 and Appendix B. We may write the function as

G(α, β; α0, β0) = −αn − 2nβ + nts log α + ntv log β,

where nts and ntv denote the aggregated expected number of transitions and transver-
sions conditional on the observed data and parameter values α0, β0. The updating
procedure is given by α1 = nts/n, β1 = ntv/(2n), and using the Felsenstein data we
get α̂ = 0.153 and β̂ = 0.037. In order to compute the observed data information
we combine (5) and expressions (8), (9), (10), to get

I(α̂, β̂) =

[
2172.7 158.9

158.9 23431.5

]
.
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The Kimura model is so simple that it is possible to find an analytical expression
for the observed data likelihood. Following Ewens and Grant (2001) page 378 the
observed data likelihood is proportional to

(1 + e−4β + 2e−2(α+β))n0(1 + e−4β − 2e−2(α+β))n1(1 − e−4β)n2 ,

where n0 is the number of sites where the nucleotides in the two sequences are the
same, n1 is the number of sites where a purine (pyrimidine) occurs in the ances-
tral sequence and the other purine (pyrimidine) occurs in the descendant sequence,
and n2 is the number of sites where a purine occurs in one sequence and a pyrimi-
dine in the other. Maximization of this function leads to the above estimates, and
the Hessian of minus the log-likelihood evaluated at the maximum gives the above
information matrix.

5.2 Multiple sequences

Now consider the case of four sequences related by a phylogenetic tree as illustrated
in Figure 1. We get the single site full log-likelihood

log L(θ; R) =
5∑

i=1

{ m∑
a=1

T i(a)Qi(a, a) +
m∑

a=1

∑
b6=a

N i(a, b) log Qi(a, b)
}

=
5∑

i=1

qi(θ)∗Ri,

where R = (R1, . . . , R5) with Ri being the sufficient statistic on lineage i consisting
of T i(a) (total time spent in state a on lineage i) and N i(a, b) (number of transitions
from a to b on lineage i) and qi(θ) is the corresponding parameterisation of the rate
matrix on lineage i. Letting y = (y1, y2, y3, y4) be the observed data at the tip of
the leaves and letting a(i), d(i) be the ancestral and descendant values at the two
ends of lineage i we get

G(θ; θ0) = Eθ0 [log L(θ; R)|y] =
5∑

i=1

Eθ0 [q
i(θ)∗Ri|y]

=
5∑

i=1

∑
a(i),d(i)

qi(θ)∗ Eθ0 [R
i|y, a(i), d(i)]Pθ0(a(i), d(i)|y).

In the E-step we therefore need to calculate conditional mean values on each lineage.
Conditioning on a(i) and d(i), the conditional mean values are determined by the
Theorem in Section 4.2. For example the mean number of transitions between two
states a and b on lineage 1 is given by (recall Figure 1)

Eθ

[
N1(a, b)

∣∣y, y1, z1
]

= Eθ

[
N1(a, b)

∣∣y1, z1
]
.

Furthermore the probabilities Pθ(a(i), d(i)|y) are easily calculated using Felsenstein’s
peeling algorithm (Felsenstein, 1981). For multiple sites formula (4) apply.

In order to compute the information matrix (5) we first calculate the full likeli-
hood score and full information matrix

S(θ; R) =
5∑

i=1

∂qi(θ)∗

∂θ
Ri and I(θ; R) = −

5∑
i=1

m2∑
k=1

∂2qi
k(θ)

∂θ∂θ∗
Ri

k.
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Figure 1: Phylogenetic tree relating four species. The observed data y = (y1, y2,
y3, y4) for a single site are the nucleotides at the tip of the leaves. The complete
data consists of all substitution events at the branches of the tree. The (unobserved)
nucleotides at the two inner nodes are denoted z = (z1, z2).

The first term in (5), determined by Eθ[I(θ; R)|y], involves the same conditional
means as described in the E-step above. In order to calculate the second term in
(5), determined by Vθ[S(θ; R)|y], we note that

S(θ; R)S∗(θ; R) =
5∑

i=1

5∑
j=1

∂qi(θ)∗

∂θ
Ri(Rj)∗

∂qj(θ)

∂θ∗
.

When i = j we find

Eθ[R
i(Ri)∗|y] =

∑
a(i),d(i)

Eθ[R
i(Ri)∗|y, a(i), d(i)]Pθ(a(i), d(i)|y),

and in the case i 6= j we find

Eθ[R
i(Rj)∗|y] =∑

a(i),d(i),a(j),d(j)

Eθ[R
i|y, a(i), d(i)] Eθ[R

j|y, a(j), d(j)]∗Pθ(a(i), d(i), a(j), d(j)|y).

Thus the second term is calculated from conditional means, variances and covari-
ances as determined by the Theorem in Section 4.2 and from the probabilities of the
inner nodes as determined by Felsenstein’s peeling algorithm.

These considerations hold for any number of sequences related by a phylogenetic
tree.

5.2.1 Example: Hasegawa-Kishino-Yano (HKY) model

The Hasegawa, Kishino and Yano (1985) model has rate matrix

Q = Q(α, β) =


· απG βπC βπT

απA · βπC βπT

βπA βπG · απT

βπA βπG απC ·

 .
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The model is reversible with stationary distribution (πA, πG, πC, πG). We consider the
case where we have the HKY rate matrix on each lineage, but lineage specific branch
lengths. Thus the rate matrix Q1 on lineage 1 is given as above and furthermore we
have the constraints

Qi = τiQ
1, i = 2, . . . , 5.

The parameters are therefore θ = (α, β, τ2, . . . , τ5) and we get

qi(θ)∗ =(
−τi(απG + β(πC + πT)), . . . ,−τi(β(πA + πG) + απC)︸ ︷︷ ︸

length 4

, log(τiαπG), . . . , log(τiαπC)︸ ︷︷ ︸
length 12

)
,

i = 1, . . . , 5, where τ1 = 1. The function G(θ; θ0) is, up to an additive constant,
given by

G(θ; θ0) =
5∑

i=1

(
− ciτiα − c̃iτiβ + ki log α + k̃i log β + (ki + k̃i) log τi

)
,

where ci, c̃i, ki and k̃i are conditional means dependent on θ0. Differentiating with
respect to α, β and τi, i = 2, . . . , 5, we get the updating scheme

α =

∑5
i=1 ki∑5

i=1 ciτi

, β =

∑5
i=1 k̃i∑5

i=1 c̃iτi

(11)

and

τi =
ki + k̃i

ciα + c̃iβ
, i = 2, . . . , 5. (12)

In each M-step we iterate between (11) and (12) to obtain new parameter values
of (α, β, τ2, . . . , τ5). In the literature this iterative algorithm is called Zellner’s two-
stage procedure, and convergence properties are described in e.g. Lauritzen (1996,
Appendix A4) and Drton (2004, Appendix A).

For illustration we consider a multiple alignment of homologous non-coding se-
quences from human, dog, mouse and rat. The alignment was obtained from the
UCSC Genome Browser and can be seen at www.daimi.au.dk/∼asger/EMdata.html.
We use the human sequence to estimate the equilibrium frequencies, and the EM-
algorithm described above to estimate the remaining parameters and obtain

α̂ = 0.331, β̂ = 0.071, τ̂2 = 1.174, τ̂3 = 0.315, τ̂4 = 0.359, τ̂5 = 1.931.

Furthermore we find the information matrix

I(θ) =



765.89 78.40 58.46 73.52 71.17 44.28

78.40 10511.36 161.81 181.20 171.49 150.00

58.46 161.81 20.63 0.80 −0.69 0.99

73.52 181.20 0.80 84.35 25.22 0.66

71.17 171.49 −0.69 25.22 77.04 0.06

44.28 150.00 0.99 0.66 0.06 11.85


.
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We use the delta method (e.g. Oehlert, 1992) to obtain parameter estimates and
standard deviations of the transition to transversion rate ratio κ = α/β and the size
of the whole tree in terms of expected number of substitutions

Γ =
(
2α(πAπG + πCπT) + 2β(πA + πG)(πC + πT)

)
·
(
1 +

5∑
i=2

τi

)
,

and obtain

estimate std.dev.

κ 4.686 0.838

Γ 0.515 0.081

Thus the transition to transversion rate ratio is significantly larger than one, and
we expect no substitutions in about half of the alignment columns.

Appendix A: Observed data information matrix

From the definition of conditional distributions (1) we get the gradient vector

S(θ; y) =
∂ log L(θ; y)

∂θ
=

∂ log L(θ; x)

∂θ
− ∂ log L(θ; x|y)

∂θ

= S(θ; x) − 1

L(θ; x|y)

∂L(θ; x|y)

∂θ
(13)

and the second order matrix

∂2 log L(θ; y)

∂θ∂θ∗
=

∂2 log L(θ; x)

∂θ∂θ∗
− 1

L(θ; x|y)

∂2L(θ; x|y)

∂θ∂θ∗

+
1

L(θ; x|y)

∂L(θ; x|y)

∂θ

1

L(θ; x|y)

∂L(θ; x|y)

∂θ∗
. (14)

Under the usual regularity conditions we have

Eθ

[∂ log L(θ; x|y)

∂θ

∣∣∣y]
= 0 and Eθ

[ 1

L(θ; x|y)

∂2L(θ; x|y)

∂θ∂θ∗

∣∣∣y]
= 0,

so that from (13) we get

S(θ; y) = Eθ[S(θ; x)|y], (15)

and so that the second term in (14) equals zero. Using (13) and (15) we can express
(14) as

I(θ; y) = −Eθ

[∂2 log L(θ; y)

∂θ∂θ∗

∣∣∣y]
= Eθ[I(θ; x)|y] − Eθ[S(θ; x)S∗(θ; x)|y] + S(θ; y)S∗(θ; y)

= Eθ[I(θ; x)|y] − Vθ[S(θ; x)|y],

10



where

Vθ[S(θ; x)|y] = Eθ[S(θ; x)S∗(θ; x)|y] − Eθ[S(θ; x)|y] Eθ[S(θ; x)|y]∗.

The information matrix based on data y need only be evaluated at θ = θ̂ where
S(θ; y) = 0.

Appendix B: Closed form expressions of integrals

Let π = (π1, . . . , πm) denote the stationary distribution of the continuous time
Markov process. In case of a reversibility we have detailed balance

Q(b, a) = πaQ(a, b)/πb,

which can also be written as

DπQ = Q∗Dπ,

where Dπ is the diagonal matrix with π along its diagonal. Consider the matrix

S = D1/2
π QD−1/2

π .

The matrix S is symmetric since

S∗ = D−1/2
π Q∗D1/2

π = D−1/2
π (Q∗Dπ)D−1/2

π = D−1/2
π (DπQ)D−1/2

π = S,

and therefore it has real eigenvalues and real orthogonal eigenvectors. Let V be the
real orthogonal matrix with eigenvectors as columns and Dλ the diagonal matrix of
corresponding eigenvalues. It follows that

P (T ) = eQT = D−1/2
π V eTDλV ∗D1/2

π .

Conditional means are now found from∫ T

0

Pab(t)Pcd(T − t) dt =
(πbπd

πaπc

)1/2 ∑
i

VaiVbi

∑
j

VcjVdjJij

where

Jij =

{
TeλiT λi = λj

eλiT−eλjT

λi−λj
λi 6= λj.

Conditional variances and covariances are found from∫ T

0

∫ t

0

Pab(u)Pcd(t − u)Pef (T − t) du dt

=
(πbπdπf

πaπcπe

)1/2 ∑
i

VaiVbi

∑
j

VcjVdj

∑
k

VekVfkIijk

11



where

Iijk =



1
2
T 2eλiT λi = λj = λk

eλkT − eλiT

(λi − λk)2
+

TeλiT

λi − λk

λi = λj, λi 6= λk

TeTλk

λi − λj

− (eλjT − eλkT )

(λi − λj)(λj − λk)
λi 6= λj, λi = λk

eλiT − eλkT

(λi − λj)(λi − λk)
− TeTλk

λi − λj

λi 6= λj, λj = λk

eλiT − eλkT

(λi − λj)(λi − λk)
− (eλjT − eλkT )

(λi − λj)(λj − λk)
λi 6= λj, λk 6= λi, λk 6= λj.

If the Markov process is not reversible it may not be possible to eigendecompose
the rate matrix Q, and even if it is the eigendecomposition may involve complex
eigenvalues and eigenvectors, which complicates evaluating the integrals.
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