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1 Introduction

This paper is motivated by the use of microarray investigations in the biological and
medical sciences. The microarray technology is less than ten years old and therefore
still developing. Using a microarray one measures simultaneously the expression
levels of a large number of genes in a biological sample. Simplifying, the microarray
chip is a small glass plate divided into a large number of spots (1000–50000), and in
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each spot copies of a short string of letters are fixed. After extraction of the DNA
material of a biological sample this is put on the chip and molecules that match the
text in a spot will bind to these. The reading consists of an image of light intensities,
where the light intensity of a spot reflects the amount of DNA material that binds to
the spot. Thus each measurement is a high dimensional vector giving the intensities
of the different spots.

An example of the use of microarray experiments is in cancer research (see e.g.
Alon et al. (1999), Golub et al. (1999), and Andersen et al. (2003)). The aim is to
improve the treatment given to cancer patients, in particular to make the treatment
more person specific by identifying suitable subgroups. Colon cancer is divided into
Dukes A, B, C, and D. Dukes C and D are serious cases that all receive chemotherapy,
whereas Dukes B usually do not receive chemotherapy after the removal of the cancer
cells. However, some of the Dukes B cases develop a more serious cancer, and it is
therefore of considerable interest to identify these cases beforehand.

In the just mentioned example the aim is to be able to classify a new case as
belonging to one of two groups. Such classification problems are common in mi-
croarray investigations. Compared to traditional classification problems the distinct
feature here is the large number of variables. Another distinctive feature is that of
the many genes being interrogated only a very small fraction is giving information
on the difference between the two groups.

A classical textbook as Mardia et al. (1979) treats exclusively the case where
the number of observations N is larger than the number of variables p measured
on each unit. In the microarray setting typical values of N are of the order 100
or less, whereas p is in the range 1000–50000. Mardia et al. (1979) mainly treats
what is known as the maximum likelihood classifier which is also the one of main
interest to us in this paper. The more recent book Hastie et al. (2001) is directed
also toward cases with p larger than n and consider many other methods than the
maximum likelihood classifier. Dudoit and Fridlyand (2003) give an excellent survey
of different classification methods in relation to microarray applications, and perform
a comparison of the different methods using microarray datasets.

Our interest in this paper is to investigate the influence of a very large num-
ber of variables p on the performance of a classifier. In particular we look at the
possibility of removing variables in order to improve the performance. In most of
the paper we consider two groups with observations x1, . . . , xn from group 1 and
observations y1, . . . , ym from group 2. On each unit p variables are measured so that
xi = (xi1, . . . , xip) and yi = (yi1, . . . , yip). A variable j is called differentiable ex-
pressed if the mean of the variable in group 1 is different from the mean in group 2.
When constructing a classifier the data are often divided into two sets, the training
data and the test data. Only the training data are used to estimate the parameters
of the classifier, whereas the test data are used to evaluate the performance of the
classifier.

In the figures the abbreviation POCC is used for the probability of correct clas-
sification.
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2 Maximum likelihood classifier

To begin with we consider the case of two homogeneous groups. An observation
z = (z1, . . . , zp) from group 1 has density f1(z) and an observation from group 2 has
density f2(z). If f1 and f2 are known the maximum likelihood classifier assigns an
observation z to the group

arg max
I

{

πIfI(z)
}

,

where π1 and π2 are prior probabilities for the two groups, π1 + π2 = 1. In medical
applications the prior probabilities reflect the knowledge one has on the composition
of the population. For convenience in the investigations below we take π1 = π2 = 1

2
.

Typically, the densities f1 and f2 are not known and must be estimated from training
data. When p is much larger than the sample size it is difficult to estimate a
completely general density. In this paper we make the simplifying assumption that
the coordinates of x are independent, with the jth coordinate having density fIj.
In many applications this assumption is not at all realistic. However, it still serves
our purpose of investigating the influence of having the number of variables very
large. Also, the classifiers that we consider are still of relevance even though the
independence assumption is not valid. In the case of independent variables the
classification rule becomes

arg max
I

{ p
∏

j=1

fIj(zj)

}

.

In practice fIj contains parameters that need to be replaced by estimates based on
the training data. We consider exclusively the case with

zj ∼
{

N(µj, σ
2
j ) group 1,

N(µj + δjσj, σ
2
j ) group 2.

(1)

Note that we here assume that the variance σ2
j is the same in the two groups, and

that we have scaled the difference in the two means by the standard deviation σj.
Under the model (1) the maximum likelihood classification of a new observation z
is based on the distances

∑

j(zj − µj)
2/σ2

j and
∑

j(zj − µj − δjσj)
2/σ2

j . Setting

D̃ = D̃(z) =
1

2

( p
∑

j=1

(zj − µj)
2

σ2
j

−
p

∑

j=1

(zj − µj − δjσj)
2

σ2
j

)

, (2)

the observation z is classified as belonging to group 1 if D̃ < 0 and to group 2 if
D̃ > 0.

Let x1, . . . , xn be the observations from group 1 and y1, . . . , ym the observations
from group 2 in the training data. We estimate µj by x̄j =

∑n
i=1 xij/n and µj + δjσj

by ȳj =
∑m

i=1 yij/m. The variance σ2
j is estimated by s2

j = {∑n
i=1(xij − x̄j)

2 +
∑m

i=1(yij − ȳj)
2}/(n + m − 2). This gives the classifier statistic

D0 = D0(z) =
1

2

p
∑

j=1

(zj − x̄j)
2 − (zj − ȳj)

2

s2
j

=

p
∑

j=1

zj
ȳj − x̄j

s2
j

− 1

2

p
∑

j=1

ȳ2
j − x̄2

j

s2
j

. (3)
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For a given training set, that is, the xis and yis, the probability of correct classi-
fication (POCC) is the probability that D0(z), as a function of z, has the correct
sign. To highlight that probabilities and other quantities are calculated with respect
to the distribution of a new observation z, we use a lower subscript N , N for new.
Thus, if the new observation z is from group 1 we have POCC = PN(D0 < 0).

Lemma 1. Consider a new observation z from group 1. Define ξN = EN(D0) =
∑p

j=1{µj(ȳj − x̄j)− 1
2
(ȳ2

j − x̄2
j)}/s2

j and τ 2
N = VN(D0) =

∑p
j=1 σ2

j (ȳj − x̄j)
2/s4

j . Then
the probability of correct classification of z is

POCC = PN(D0 < 0) = Φ
(

−ξN

τN

)

, (4)

where Φ is the standard normal distribution function.

Proof. The normality of zj trivially implies that the distribution of D0 for fixed
training data is D0 ∼ N(ξN , τ 2

N).

To study the statistical properties of −ξN/τN , as a function of the training data,
we note the following simple results.

Lemma 2. Let f = n + m − 2 and let δk
• =

∑

j δk
j . Then

E(ξN) =
p

n
c11 − c12δ

2
•, c12 =

f

2(f − 2)
, c11 =

(

1 − n

m

)

c12,

E(τN) =
p

n
c21 + c22δ

2
•, c22 =

f 2

(f − 2)(f − 4)
, c21 =

(

1 +
n

m

)

c22,

and

V (ξN) =
p

n2
c31 +

1

n
c32δ

2
• + c33δ

4
•, c31 =

f 2

2(f − 2)(f − 4)

{

1 +
n2

m2
+

(1 − n
m

)2

f − 2

}

,

c32 =
f 2

(f − 2)(f − 4)

{ n

m
− 1 − n

m

f − 2

}

, c33 =
f 2

2(f − 2)2(f − 4)
.

Proof. The results follow from the independence of x̄, ȳ, and s2, and from the
moments of 1/a, where a has a χ2 distribution with f degrees of freedom.

Using a central limit theorem for ξN/
√

p and a law of large numbers for τ 2
N/p in

the limit p → ∞, one sees from Lemma 2 that

−ξN

τN

∼→ N

(−
√

p
n
c11 +

√

n
p
c12δ

2
•

√

c21 + c22
n
p
δ2
•

,
1

n

c31 + c32
n
p
δ2
• + c33

n2

p
δ4
•

c21 + c22
n
p
δ2
•

)

, (5)

as p → ∞. Let ν and ω2 be the mean and variance in this approximating normal
distribution. Then we use

Φ(ν) and Φ(ν ± ω) (6)

as an approximation for the median probability of correct classification and for the
upper and lower 15% quantiles of the probability of correct classification, respec-
tively.
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2.1 n = m

The two formulae (4) and (5) together give a simple way of seeing the size and
variation in the probability of correct classification (POCC). The median value of
POCC (6) is obtained as the standard normal distribution function evaluated at the
mean value in (5). The major controlling variable in this expression is

√

n/p
∑

j δ2
j .

The POCC median value is illustrated in Figure 1. The vertical bars give the
standard normal distribution function evaluated at the mean plus and minus one
standard deviation, corresponding to the upper and lower 15% quantiles.
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Figure 1: Probability of correct classification (POCC) for a new observation from group
1 as a function of the number of variables p. The curve gives the median value and the
vertical bars give upper and lower 15% quantiles of POCC, see (6). Full drawn line:
number of expressed variables is 20; dashed line: number of expressed variables is 80. In
both cases the average values of δ2 and δ4, entering (5), for the expressed variables are 1
and 3, respectively.

The simple (and well-known) message from Figure 1 is that when the number of
variables is much larger than the number of expressed variables the classifier has a
poor performance. This is also clear from the expression

√

n/p
∑

j δ2
j , entering the

mean value, which tends to zero as 1/
√

p as p increases and
∑

j δ2
j is kept fixed.

Above, the probability of correct classification for a new sample from group 1
was considered. Of interest is also the joint probability of correct classification for
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a sample from group 1 and a sample from group 2. It turns out that there is a
strong negative correlation between the two probabilities, so that if the classifier
works well in one group the performance is not as good in the other group. Defining
ξ̃N = EN(D0) and τ̃N = VN(D0), when the new observation z is from group 2,
expression (3) shows, trivially, that τ̃N = τN and that ξ̃N = ξN +

∑

j δjσj(ȳj−x̄j)/s
2
j .

The probability of correct classification is in this case PN(D0 > 0) = Φ(ξ̃N/τN).
Supplementing Lemma 2, we have for n = m the following result.

Lemma 3. Let n = m. Then

E(ξ̃N) = −E(ξN) = c12δ
2
•,

V (ξ̃N) = V (ξN) =
p

n2
c31 +

1

n
c32δ

2
• + c33δ

4
•,

and
Cov(−ξN , ξ̃N) = − p

n2
c31 + c33δ

4
•.

In Figure 2 are simulated values of (−ξN/τN , ξ̃N/τN) illustrating the strong neg-
ative correlation between the two.
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Figure 2: Plot of ξ̃N/τN against −ξN/τN where the probabilities of correct classification
are Φ(−ξN/τN ) for group 1 and Φ(ξ̃N/τN ) for group 2. The left plot is based on the
classification statistic from (3) for the case of 15 observations in each group, and the right
plot is based on the classification statistic from (8) for the case of 10 observations in group
1 and 30 observations in group 2. In both plots there are p = 1000 variables and k = 20
differentiable expressed variables, 10 with the value δ = 0.5, 7 with the value δ = 1.0, 2
with the value δ = 1.5, and 1 with the value δ = 2.0.

2.2 n 6= m

Because of the term c11

√

p/n = (m−n)f
√

p/n/[m(f −2)] in the mean value in (5),
the classifier based on D0 cannot be used when n 6= m. If m < n and p is large the
probability of correct classification for an observation from group 1 is close to zero.

6



The problem is that when δj = 0 and m 6= n we have E[(zj − x̄j)
2 − (zj − ȳj)

2] =
σ2

j (1/n − 1/m) 6= 0. This very simple observation is not always taken into account
(see e.g. Mardia et al. (1979) and Tibshirani et al. (2003)). There are various ways
to remedy the problem. Looking at (3) we write

L0 = L0(z) =
∑

j

zj
ȳj − x̄j

s2
j

and κ0 =
1

2

∑

j

ȳ2
j − x̄2

j

s2
j

. (7)

The classification based on the sign of D0 = L0 − κ0 corresponds to the rule that
z belongs to group 1 if L0 < κ0 and belongs to group 2 if L0 > κ0. The solution
to the above bias problem when n 6= m is to replace κ0 by a better value. We
can formulate this in the way that L0 is our classifier statistic, with small values
indicating that the observation belongs to group 1 and large values indicating group
2, and the problem is to find a good boundary between the two.

One possibility is to evaluate the classifier statistic L0 on the training data and
use these values to separate the two groups. Thus, we calculate ai = L0(xi), i =
1, . . . , n, and bi = L0(yi), i = 1, . . . ,m, and use 1

2
(ā + b̄) as the boundary point.

However, this approach simply gives back κ0:
1
2
(ā+ b̄) = 1

2

∑

j(x̄j + ȳj)(ȳj + x̄j)/s
2
j =

κ0. To obtain a more useful boundary point consider a leave one out method, where
a classifier is constructed based on the reduced data set with one data point left out,
and this classification statistic is evaluated at the point left out. Thus, if xi is left
out let x̄(i) be the average of the remaining n−1 observations, and let s2(xi) be the
within group variance for the two groups with xi taken out. Define the classification
statistic Lxi

0 (z) =
∑

j zj(ȳj − x̄j(i))/s
2
j(xi), and let ai = Lxi

0 (xi) be the value when
Lxi

0 is evaluated at the point xi left out. Similarly, define bi = Lyi

0 (yi), where Lyi

0 is
the classification statistic when yi has been removed form the training set. We then
use κ = 1

2
(ā + b̄) as the boundary point between the two groups. Written explicitly

this gives

κ =
1

2

∑

j

(

1

n

n
∑

i=1

xij
ȳj − x̄j(i)

s2
j(xi)

+
1

m

m
∑

i=1

yij
ȳj(i) − x̄j

s2
j(yi)

)

.

However, using this value is still not quite satisfactory. Going back to the case
n = m the mean of D0 = L0(z)− κ0, with respect to both z and the training set, is
−fδ2

•/[2(f − 2)] when the new observation z belongs to group 1. This expression is
independent of the mean µ, which is clear from the first form of D0 in (3). Contrary
to this the mean of L0−κ is −(f −1)δ2

•/[2(f −3)]−2
∑

j µjδj/[(f −2)(f −3)], which
depends on µ. To overcome the dependency on µ we write also the classification
statistic L as an average of the statistics obtained when leaving out one observation.
Thus, we use

L̃0 = L̃0(z) =
1

2

∑

j

zj

(

1

n

n
∑

i=1

ȳj − x̄j(i)

s2
j(xi)

+
1

m

m
∑

i=1

ȳj(i) − x̄j

s2
j(yi)

)

,

so that

L(z) = L̃0(z) − κ =
1

2

∑

j

(

1

n

n
∑

i=1

(zj − xij)
ȳj − x̄j(i)

s2
j(xi)

+
1

m

m
∑

i=1

(zj − yij)
ȳj(i) − x̄j

s2
j(yi)

)

.

(8)
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This statistic clearly has a mean independent of µ, the mean being E(L) =
−(f − 1)δ2

•/[2(f − 3)] for an observation z from group 1 and minus this value for an
observation z from group 2.

Using notation as for the classifier D0 we define

ξN = L(µ), and τ 2
N =

1

4

∑

j

σ2
j

(

1

n

n
∑

i=1

ȳj − x̄j(i)

s2
j(xi)

+
1

m

m
∑

i=1

ȳj(i) − x̄j

s2
j(yi)

)2

. (9)

Then, as in Lemma 1, the probability of correct classification for an observation
from group 1 is Φ(− ξN

τN
). To establish a result as in Lemma 2 some notation is

needed. Let u1, . . . , un, v1, . . . , vm be independent variables with a standard normal
distribution. We use the same notation as in the construction of L above so that
for example ū(i) is the average of the u variables with ui left out, and s2(ui) is
the corresponding variance estimate based on the remaining ujs and on all the vjs.
Define also

tu(i) =
v̄ − ū(i)

s2(ui)
, tv(i) =

v̄(i) − ū

s2(vi)
.

Lemma 4. The means EξN and Eτ 2
N are given as in Lemma 2 with the following

coefficients

c11 = 0, c12 =
f − 1

2(f − 3)
,

c21 =
n − 1

4
E[tu(1)tu(2)] +

n(m − 1)

4m
E[tv(1)tv(2)] +

n

2
E[tu(1)tv(1)]

+
f(f + 1)(f − 1)2

4m(m − 1)(n − 1)(f − 3)(f − 5)
,

c22 =
n − 1

4n
E[(s2(u1)s

2(u2))
−1] +

m − 1

4m
E[(s2(v1)s

2(v2))
−1]

+
1

2
E[(s2(u1)s

2(v1))
−1] +

(f + 2)(f − 1)2

4nm(f − 3)(f − 5)
.

The variance V (ξN) is given in Appendix A.

Proof. We illustrate the calculations leading to Eτ 2
N . Taking one of the terms of

the sum (9) for τ 2
N we need to evaluate

E

(

1

n

n
∑

i=1

v̄ + δ − ū(i)

s2(ui)
+

1

m

m
∑

i=1

v̄(i) + δ − ū

s2(vi)

)2

.

The typical terms here are

E
((v̄ + δ − ū(i))2

s4(ui)

)

=
( 1

n − 1
+

1

m
+ δ2

) (f − 1)2

(f − 3)(f − 5)
,

E
((v̄ + δ − ū(1))(v̄ + δ − ū(2))

s2(u1)s2(u2)

)

= E
((v̄ − u(1))(v̄ − ū(2))

s2(u1)s2(u2)

)

+δ2E([s2(u1)s
2(u2)]

−1),
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and

E
((v̄ + δ − ū(1))(v̄(1) + δ − ū)

s2(u1)s2(v1)

)

= E
((v̄ − u(1))(v̄(1) − ū)

s2(u1)s2(v1)

)

+ δ2E([s2(u1)s
2(v1)]

−1),

where in the second and third symmetry is used to remove terms with δ. Counting
the number of terms of a particular form the result in the lemma for Eτ 2

N is obtained.
The expression for V (ξN) is calculated in a similar manner.

The mean values entering the expressions for the coefficients in Lemma 4 do not
seem to have a closed form expression, and we calculate these by simulations. For
the case where n = m the approach based on D0 from (3) and the approach based on
L from (8) give almost the same probability of correct classification. Actually, the
asymptotic mean in (5) is slightly larger when using L instead of D0: if we consider
n = m = 10 we have c21/c

2
12 = 9.1429 and c22/c

2
12 = 4.5714 when considering D0,

and the corresponding numbers are 8.1 and 4.0 when using L. As for D0, the use of
L for classification gives a strong negative correlation between the probabilities of
correct classification for a new observation from group 1 and group 2. An example
can be seen in Figure 2. In Table 1 are a few instances of the median probability of
correct classification of an observation from group 1. As in (6) the median is taken
as Φ(−Eξn/

√

Eτ 2
N).

POCC, k = 20 POCC, k = 80

c21/c
2
12 c22/c

2
12 p = 1000 p = 10000 p = 1000 p = 10000

n = m = 10 8.1 4.0 0.75 0.59 0.99 0.81

n = 15,m = 5 15.9 4.0 0.72 0.58 0.98 0.78

Table 1: Median of the probability of correct classification (POCC) for the case with k
differentiable expressed variables. The mean of δ2 for the expressed variables is 1. The
classification is based on L from (8).

3 Thresholding

The differentiable expressed variables are those with δj 6= 0. When the number
of differentiable expressed variables is small as compared to the total number of
variables p, the use of the classification statistic D0 from (3) or L from (8) fails.
The intuitive reason is that most variables contribute noise only, and this eventually
drowns the signal of interest. An obvious way to try to remedy this problem is
to use a subset of the variables only in the classification statistic. For the simple
model that is considered in this paper, with independence between the variables,
the selection of variables is naturally based on the observed difference between the
two groups for each variable. This difference is expressed through the t statistic

tj =
ȳj − x̄j

√

s2
j(

1
n

+ 1
m

)
.
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In the microarray setting, where variables are genes, there can be dependence be-
tween the variables due to the existence of biological pathways. In such a case one
can consider including a whole pathway and not only those genes within a pathway
that show a large difference between the two groups.

Let w(tj) be a weight function, where w = 1 means that the variable is included
and w = 0 means that the variable is not included in the classification. Using the
classification statistic D0 from (3) the new classification based on a subset of the
variables only is

D = D(z) =
1

2

p
∑

j=1

(zj − x̄j)
2 − (zj − ȳj)

2

s2
j

w(tj) (10)

When w can take on the two values zero and one only, the selection of the variables
is called hard thresholding. For a parameter ∆ we can in this case write

w(t) =

{

1 |t| ≥ ∆,

0 |t| < ∆.
(11)

When instead w is a continuous function of t one uses the term soft thresholding. A
typical choice of w is

w(t) =
|t| − ∆

θ + |t| 1(|t| > ∆), (12)

where θ is a parameter. In the soft thresholding case we keep the idea that w = 0
below some cutoff ∆. This is because the aim is both to make a good classifier and
to have this classifier based on a small list of variables. The selected variables can
then be investigated in new experiments.

To begin with let us consider the classification based on (10) when n = m and
when the weight function w is fixed, that is, the parameters of the weight function
are fixed as opposed to being determined by the data. Then the performance analysis
of the classifier in Section 2 can be repeated. For a new observation z from group 1
let ξN = EN(D0) and τ 2

N = VN(D0), and let ξ̃N be the mean when the observation is
from group 2. The probability of correct classification is Φ(−ξN/τN) and Φ(ξ̃N/τN),
respectively. Using a central limit theorem for (ξN , ξ̃N), and the law of large numbers
for τ 2

N , we find that −ξN/τN and ξ̃N/τN have the same asymptotic distribution. To
state this let u ∼ N(0, 2

n
), r2 ∼ χ2(f)/f , and define

m1(δ) = E
[u + δ

r2
w

( u + δ

r
√

2/n

)]

and m2(δ) = E
{[u + δ

r2
w

( u + δ

r
√

2/n

)]2}

.

Then

−ξN

τN

≈ N

(

∑

j
δj

2
m1(δj)

√

∑

j m2(δj)
,

∑

j[
1
4
( 2

n
+ δ2

j )m2(δj) − 1
4
δ2
j m1(δj)

2]
∑

j m2(δj)

)

,

Furthermore, the covariance is

Cov
(

−ξN

τN

,
ξ̃N

τN

)

≈ −
∑

j[
1
4
( 2

n
− δ2

j )m2(δj) + 1
4
δ2
j m1(δj)

2]
∑

j m2(δj)
.

10



It does not seem possible to calculate m1 and m2 analytically, and we therefore find
these by simulations. In Table 2 is a small illustration of the effect of using a fixed
threshold. There are k expressed variables, all with the same value δ = 1 of the
scaled difference between the two groups. A small improvement when using a fixed
threshold can be seen, and a soft threshold is slightly better than a hard threshold.
Furthermore, one sees that without thresholding there is a strong negative corre-
lation between −ξN/τN and ξ̃N/τN , corresponding to the probabilities of correct
classification in group 1 and group 2, and that this correlation is reduced consid-
erably after thresholding. The negative correlation has already been illustrated in
Figure 2.

p = 1000 p = 10000
no hard soft no hard soft

mean, k = 20 0.63 0.74 0.81 0.21 0.27 0.31
Φ(mean) 0.74 0.77 0.79 0.58 0.61 0.62

sd 0.24 0.29 0.31 0.23 0.24 0.25
corr −0.74 −0.22 −0.05 −0.97 −0.76 −0.59

∆ 2.2 1.6 2.6 2.2
mean, k = 80 2.24 2.38 2.46 0.82 1.01 1.14

Φ(mean) 0.99 0.99 0.99 0.79 0.84 0.87
sd 0.27 0.31 0.33 0.23 0.26 0.28

corr −0.36 −0.01 0.08 −0.88 −0.44 −0.25
∆ 1.7 1.0 2.4 1.9

Table 2: Asymptotic mean and standard deviation of −ξN/τN where the probability of
correct classification is Φ(−ξN/τN ). There are k differentiable expressed variables, all with
δ = 1. The row with ∆ gives the threshold function: 1(|tj | > ∆) (hard thresholding) and
1(|tj | > ∆)(|tj | − ∆)/|tj | (soft thresholding). The thresholding parameter ∆ was chosen
so as to optimize the probability of correct classification.

As in the case of no thresholding the statistic D cannot be used when n 6= m.
Turning to the statistic (8) instead the thresholding idea gives

L(z) =
1

2

∑

j

( 1

n

n
∑

i=1

(zj−xij)
ȳj − x̄j(i)

s2
j(xi)

w(tj(xi))+
1

m

m
∑

i=1

(zj−yij)
ȳj(i) − x̄j

s2
j(yi)

w(tj(yi))
)

,

(13)
where t(xi) is the t-statistic for the two groups with xi left out and, similarly, t(yi)
is the t-statistic with yi left out. Note that the distributional properties of this
classification statistic are independent of the unknown means µj, and that the mean
of one of the terms in the sum is zero when δj = 0.

3.1 Data dependent threshold

In this subsection we illustrate by some examples the optimal improvement one can
obtain using a thresholding idea. The optimal choice of the threshold is calculated
using the (unknown) values of δj. In practice the threshold is estimated from the
data giving a suboptimal classifier. We simulate data from the model and calculate

11



for the statistic D in (10)

η1(∆) = −ξN

τN

and η2(∆) =
ξ̃N

τN

, (14)

where

ξN =

p
∑

j=1

[

µj(ȳj − x̄j) −
1

2
(ȳ2

j − x̄2
j)

]w(tj)

s2
j

,

ξ̃N =

p
∑

j=1

[

(µj + δjσj)(ȳj − x̄j) −
1

2
(ȳ2

j − x̄2
j)

]w(tj)

s2
j

, (15)

τ 2
N =

p
∑

j=1

σ2
j

s4
j

(ȳj − x̄j)
2w(tj)

2,

as a function of the threshold ∆. The probability of correct classification is Φ(η1(∆))
for a new observation from group 1 and Φ(η2(∆)) for a new observation from group
2. The corresponding formulae when using the statistic L are obtained from (13).
When looking for the best value of ∆ we need to decide whether to maximize η1(∆),
η2(∆), or a combination of the two. In some applications it it much more important
to classify samples from one of the two groups correctly than samples from the
other group. Thus in a setting of cancer patients one group can be patients needing
a particular treatment for improving survival, whereas treatment is not needed in
the second group. In such a situation we aim at maximizing η1(∆), say, subject
to an upper bound for η2(∆). An important aspect in this situation is, however,
that the strong negative correlation between η1(∆) and η2(∆) diminishes when the
threshold ∆ is increased. When the two groups are equally important it becomes of
interest to maximize min{η1(∆), η2(∆)} or, alternatively, to maximize the average
(η1(∆) + η2(∆))/2.

Figures 3 – 5 show examples of the probability of correct classification as a
function of the threshold. In Figure 3 are examples of the probability of correct
classification for both groups using the statistics D. As can be seen in this figure
the choice of threshold depends on which group is considered.

In Figure 4 hard and soft thresholding are compared and the use of the statistics
D and L are compared. Typically the soft thresholding allows for a broader interval
of ∆ values for which the probability of correct classification is large. However, the
price for this is that more variables are used in the classifier. Also, Figure 4 shows
that the use of the statistics D and L when n = m often give comparable results.

In Figure 5 the case of unequal sample sizes n 6= m is illustrated. In the first
subplot D is included to show the bias problem mentioned in subsection 2.2. Also
included is an obvious modification of D, that solves the bias problem in the case
of no thresholding, namely

D̃ =
1

2

p
∑

j=1

[

(zj − x̄j)
2/(1 + 1/n) − (zj − ȳj)

2/(1 + 1/m)
]w(tj)

s2
j

. (16)

As can be seen from this subplot the bias when using D is very serious and this is
not solved by the use of D̃ in the case of thresholding. Generally, there is a large
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variation in the optimal improvement that can be achieved using the thresholding
idea.
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Figure 3: Probability of correct classification (POCC) based on D in (10) as a function of
the threshold ∆. The simulations are with n = m = 15, p = 1000, and with 20 variables
having a nonzero differential expression of size δ = 1. Full drawn line: POCC for group
1; dashed line: POCC for group 2.

Tables 3 and 4 give median values, based on 100 simulations, for the probability
of correct classification using the optimal threshold. A rough rule is that the dis-
tribution of the improvement max∆ η(∆) − η(0) is independent of the probability
of correct classification without thresholding, Φ(η(0)). When comparing Table 3
with Table 2 we see that the use of an optimal data dependent threshold gives a
somewhat larger improvement in the probability of correct classification than the
use of a fixed threshold. Another difference to Table 2 is that there is very little
difference between the use of a hard and a soft threshold.
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Figure 4: Probability of correct classification (POCC) for group 1 as a function of the
threshold ∆. The simulations are with n = m = 15, p = 1000, and with 20 variables
having a nonzero differential expression of size δ = 1. In the two upper subplots hard (full
drawn line) and soft (dashed line) thresholding are compared for the statistic D. The soft
thresholding is (12) with θ = 0. In the two lower subplots hard thresholding for D (full
drawn line) and L (dashed line) are compared.
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Figure 5: Probability of correct classification (POCC) using the statistic L in the case of
unequal sample sizes. In all four subplots n = 10 and m = 30, and the full drawn lines are
for group 1 and the dashed lines are for group 2. Except for the last subplot there are 20
variables having a nonzero differential expression of size δ = 1. In the last subplot there
are 80 variables instead of 20. The two upper subplots have p = 1000 and the two lower
ones have p = 10000. The upper left subplot compares hard thresholding for D (lines and
points) and L (lines only). Included also is the statistic D̃ in (16) (dashed line with +).

15



k δ p D/L no h s av ha sa

20 1 1000 D 74 82 81 73 79 79

L 73 84 82 73 79 80

20 * 1000 D 71 84 86 71 83 84

L 71 87 87 71 83 84

20 1 10000 D 58 68 67 58 62 62

L 58 69 68 58 62 62

20 * 10000 D 57 71 72 57 67 69

L 57 72 74 57 68 70

80 1 10000 D 80 88 88 79 85 87

L 79 89 89 79 86 87

80 * 10000 D 77 92 94 77 91 94

L 77 94 94 77 92 93

Table 3: Median probability of correct classification in percent using optimal thresh-
old for the two classification statistics D and L, and for the case of equal sample sizes
n = m = 10. Numbers are based on 100 simulated values. Each pair of rows give
the results for D and L. The column no is for the case of no thresholding, whereas
h and s signify hard and soft thresholding, respectively. The last three columns give
the values for the average probability for the two groups, av is for the case of no
thresholding, ha is hard thresholding, and sa is soft thresholding. Hard threshold-
ing is as in (11) and soft thresholding is given in (12) with θ = 0. The number of
differentiable expressed variables is k. When the δ entry is 1 all the nonzero δs are
equal to 1, and when the entry is an asterisk the δ values (0.5, 1.0, 1.5, 2.0) are used
in the proportions (0.5, 0.35, 0.10, 0.05).

k δ p no h1 s1 h2 s2 av ha sa

20 1 1000 78 92 91 91 89 78 88 89

20 * 1000 76 94 94 92 91 76 92 92

80 1 10000 85 98 98 98 98 84 97 98

80 * 10000 82 100 100 99 99 82 99 99

Table 4: Median probability of correct classification in percent using optimal thresh-
old for the classification statistic L, and for the case of unequal sample sizes n = 10
and m = 30. Numbers are based on 100 simulated values. The column no is for
the case of no thresholding, whereas h1 and h2 signify hard thresholding for the
two groups, s1 and s2 soft thresholding, and ha and sa are hard and soft thresh-
olding for the average of the two groups. Hard thresholding is as in (11) and soft
thresholding is given in (12) with θ = 0. The number of differentiable expressed
variables is k. When the δ entry is 1 all the nonzero δs are equal to 1, and when
the entry is an asterisk the δ values (0.5, 1.0, 1.5, 2.0) are used in the proportions
(0.5, 0.35, 0.10, 0.05).
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3.2 Shrunken centroids

Tibshirani et al. (2003) consider classification based on a statistic similar to D0 in (3),
but with the group averages x̄ and ȳ replaced by shrunken averages. This means
that the group averages are shifted towards the overall average. Let the overall
average for gene j be aj = (nx̄j + mȳj)/(n + m) and let wx =

√

1/n − 1/(n + m)

and wy =
√

1/m − 1/(n + m). As before tj = (ȳj − x̄j)/
√

s2
j(1/n + 1/m) is the t-

statistic for difference between the two groups. We can write the shrunken averages
as

x̃j =

{

aj if |tj| < ∆,

x̄j + sign(ȳj − x̄j)∆wxsj if |tj| ≥ ∆,

and

ỹj =

{

aj if |tj| < ∆,

ȳj − sign(ȳj − x̄j)∆wysj if |tj| ≥ ∆,

and the classification is based on

DT (z) =
1

2

p
∑

j=1

(zj − x̃j)
2 − (zj − ỹj)

2

s2
j

=

p
∑

j=1

zj
ỹj − x̃j

s2
j

− 1

2

p
∑

j=1

ỹ2
j − x̃2

j

s2
j

. (17)

Presumably the motivation for this kind of approach goes back to the James-Stein
estimator in statistics. The latter involves shrinkage and has the property that the
mean square error (taking the sum over all the variables) is reduced.

Proposition 5. The classification statistic DT (z) can be written as

DT (z) = D(z) +
1

2

p
∑

j=1

|tj|w(tj)∆

(

1

m
− 1

n

)

, (18)

where D(z) is the threshold statistic from (10) with the weight function w(t) given
in (12) with θ = 0.

Proof. From the definition of x̃j and ỹj it follows that

ỹj − x̃j = {ȳj − x̄j − sign(ȳj − x̄j)sj∆(mx + my)}1(|tj| > ∆)

= (ȳj − x̄j)
{

1 − sj

|ȳj − x̄j|
∆(mx + my)

}

1(|tj| > ∆)

= (ȳj − x̄j)
{

1 − ∆

|tj|
}

1(|tj| > ∆),

and when |tj| > ∆ the average is

ỹj + x̃j = ȳj + x̄j − sign(ȳj − x̄j)sj∆(mx − my).

This gives
p

∑

j=1

zj
ỹj − x̃j

s2
j

=

p
∑

j=1

zj
ȳj − x̄j

s2
j

w(tj),
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with w(tj) = (1 − ∆/|tj|)1(|tj| > ∆), and

1

2

p
∑

j=1

ỹ2
j − x̃2

j

s2
j

=
1

2

p
∑

j=1

ȳj − x̄j

s2
j

w(tj){ȳj + x̄j − sign(ȳj − x̄j)sj∆(mx − my)}

=
1

2

p
∑

j=1

ȳ2
j − x̄2

j

s2
j

w(tj) −
1

2

p
∑

j=1

|tj|w(tj)∆

(

1

m
− 1

n

)

.

Combining these two expressions the result of the proposition is obtained.

Proposition 5 shows that when there is the same number of observations in the
two groups, n = m, the statistic DT is the same as D from (10), and when n 6= m
the two differ by an additive term not dependent on z. Also, when n 6= m the
statistic DT suffers from the same problem as D, that is, when δj = 0 the mean of
{(zj−x̃j)−(zj− ỹj)}/s2

j is not zero. However, the correction term in (18) goes a long
way in alleviating this problem for larger values of the threshold ∆, so that DT has
better properties than D when n 6= m. Tibshirani et al. (2003) do not mention the
bias problem for n 6= m. They do, however, introduce a method called “adaptive
choice of threshold” that can help in removing this problem. The classification
statistic is still DT from (17), but now the definition of ỹ is changed to

ỹj =

{

aj if |tj| < θ∆,

ȳj − (1 − 1
θ
) n

n+m
(ȳj − x̄j) − sign(ȳj − x̄j)∆wysj if |tj| ≥ θ∆,

where θ is a positive parameter. The definition of x̃ is as before. When θ = 1 we
recover the situation from before. To derive a result similar to Proposition 5 define

w1(t) =











{n/θ+m
n+m

− ∆
|t|} |t| ≥ max{1, θ}∆,

n
n+m

(1/θ − ∆
|t|) min{1, θ}∆ < |t| < max{1, θ}∆,

0 |t| ≤ min{1, θ}∆,

and

h1(t) =

{

1 − 1
θ

|t| ≥ max{1, θ}∆,

1 |t| < max{1, θ}∆,
and h2(t) =

{

1
m
− 1

n
|t| ≥ max{1, θ}∆,

− 1√
n

|t| < max{1, θ}∆.

A simple calculation reveals that

ỹj − x̃j = (ȳj − x̄j)w1(tj),

and

ỹj + x̃j = ȳj + x̄j −
n

n + m
h1(tj)(ȳj − x̄j) − sign(ȳj − x̄j)sj∆h2(tj).

Inserting these in the classification statistic we find

DT (z) =

p
∑

j=1

zj
ȳj − x̄j

s2
j

w1(tj) −
1

2

p
∑

j=1

ȳ2
j − x̄2

j

s2
j

w1(tj) (19)

+
1

2m

p
∑

j=1

t2jw1(tj)h1(tj)∆h2(tj) +
1

2

p
∑

j=1

|tj|w1(tj)∆h2(tj).
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Comparing this with (18) the weight function w has been changed and an extra term
has appeared. For a fixed threshold ∆ one can presumably choose the parameter θ
so as to remove the bias problem for the terms with δj = 0. For the case n = 10 and
m = 20 we find the following relation between ∆ and θ needed to remove the bias,

θ 0.70 0.80 0.85 0.90
∆ 1.1 2.0 2.8 4.1

Another way of looking at DT is that the basic classification statistic
∑

j zjw1(tj)(ȳj−
x̄j)/s

2
j is a thresholded version of L0 from (7), and the three other terms in DT in

(19) give a cutoff value κT for this statistic. To choose a value of θ in practice
a crossvalidation step is necessary, and this is basically also what happens in the
statistic L from (13).

Tibshirani et al. (2003) also suggest to replace the ordinary t–statistic with a
modified version where one adds a constant term to the standard deviation s in the
denominator. It seems that this gives a slight reduction in the false discovery rate,
and this will be advantageous when selecting genes to include in the classifier. We
will, however, not investigate this in detail here.

3.3 Partial Least Squares

A number of papers have appeared recently advocating the use of partial least
squares in classifications with many variables and few observations (Nguyen and
Roche (2002), Pérez-Enciso and Tenenhaus (2003), Ding and Gentleman (2004),
Boulesteix (2004)). The partial least squares idea originates in chemometrics where,
as an example, the variables xj, j = 1, . . . , p, correspond to signals at different wave-
lengths and the response r is the chemical composition of some compound. Thus,
in this setting, the response r is continuous and a natural model is to have (r, x)
multivariate normal. This does not quite capture the situation here of two distinct
groups, where r = (1, . . . , 1, 2, . . . , 2) is the vector of group labels. Nevertheless, in
applications the method has been quite successful.

The partial least squares approach (Stone and Brooks (1990)) with K compo-
nents is based on K linear combinations of the data vector x,

w′
1x,w′

2x, . . . , w′
Kx,

where w1, . . . , wK are the weight vectors. The first weight vector w1 is chosen as the
unit vector maximizing

Cov(w′
1x, r) =

p
∑

j=1

w1jCov(xj, r). (20)

The theoretical solution to this is of course the vector w1 = c1Cov(x, r), where c1 is a
normalizing constant. For a data set (x1, r1), . . . , (xM , rM) we replace the theoretical
covariance with the estimate

∑M
i=1 xi(ri− r̄)/(M −1). In the situation of this paper,

with M = n + m and with ri = 1 for an observation from group 1 and ri = 2 for an
observation from group 2, the first weight vector w1 becomes

w1j = c1
nm

(M − 1)M
(ȳj − x̄j) = c̃1(ȳj − x̄j).
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If we use only one component, K = 1 in the partial least squares approach, the
classification of a new observation z is based on the statistic

u1 =

p
∑

j=1

zj(ȳj − x̄j). (21)

Thus, the difference to the statistic L0 in (7) is that in (21) there is no standard-
ization by the within group variance estimate s2

j . Calculating the mean of u1 with
respect to the distribution of z, ENu1, when z belongs to group1 and when z belongs
to group 2, the difference is

∑p
j=1 δjσj(ȳj − x̄j). The same difference of means for

L0 in (7) is
∑p

j=1 δjσj(ȳj − x̄j)/s
2
j .

The second partial least squares component, given by the weight vector w2, is also
obtained by maximizing the correlation as in (20), but now w2 has to be orthogonal
to w1 in the sense

w′
2Σw1 = 0,

where Σ = Var(x). The solution to this is

w2 = c2

{

w1 −
( w′

1Σw1

w′
1Σ

2w1

)

Σw1

}

, (22)

which follows from

Cov(w′
2x, r) = Cov

(

w′
2

{

x −
( x′Σw1

w′
1Σ

2w1

)

Σw1

}

, r
)

,

whenever w′
2Var(x)w1 = 0. In practice Σ is replaced by the sample variance S =

X ′X, where X is the M × p data matrix with the average subtracted for each
variable. It is clear from (22) that the space spanned by {w1, w2} is the same as
that spanned by {w1, Sw1}, and the second classification statistic supplementing
(21) can be taken as

u2 =

p
∑

j=1

zj

{ p
∑

r=1

Sjr(ȳr − x̄r)

}

.

For K components the space spanned by {w1, . . . , wK} is the same as that spanned
by {w1, Sw1, . . . , S

K−1w1}. Having selected the number of partial least squares
components K the classification involves a second stage where a classifier is being
build from u1, . . . , uK . The methods used most are either logistic regression or a
maximum likelihood classifier (see the references at the start of this subsection).
This step corresponds in our setting to choosing a value for the cutoff point κ0 in
(7). The bias problem mentioned in subsection 2.2 reappears here, and it seems
that this is not addressed in papers like Nguyen and Roche (2002) and Boulesteix
(2004).

We now give an interpretation of the partial least squares method within the
classification setting. In the setup of (1) it is assumed that the variables in x are
independent. The variance matrix is then Σ = diag(σ2

1, . . . , σ
2
p). In the case where

the variables are scaled to have standard deviation one (a step that is often done in
partial least squares applications), the theoretical partial least squares components
Σkw1 are therefore equal to the first component w1 and, furthermore, the maximum
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likelihood classifier is based on z′w1. In this case the optimal number of partial
least squares components is 1. In the more general model with an arbitrary variance
matrix Σ the maximum likelihood classifier is based on the statistic z′Σ−1w1. In
practice with p ≫ M we cannot invert the sample variance S. However, we can
view I, S, S2, . . . as terms in an expansion of a generalized inverse. Formally, if we
write S−1 = [I + (S − I)]−1 = I + (S − I) + (S − I)2 + · · · we see that S−1w1

gives the terms w1, Sw1, S
2w1, . . . Wold et al. (1984) explain the relation between

partial least squares and generalized inverse. When looked at this way the partial
least squares approach with more than one component may potentially give a small
improvement over the classifier based on the first component only.

In the classification setting the usual variance estimate S = X ′X does not seem
to be the most appropriate. This does not take into account the division of the data
into two groups. Thus, a better estimate, using the notation of this paper, is

1

n + m − 2

{ n
∑

i=1

(xi − x̄)(xi − x̄)′ +
m

∑

i=1

(yi − ȳ)(yi − ȳ)′
}

.

In Boulesteix (2004) the partial least squares method is seen as a way of reducing
the dimension by itself. However, using one component only, which resembles the
method studied in this paper, we have seen a strong need to reduce the number of
variables. Most other authors (Nguyen and Roche (2002), Pérez-Enciso and Tenen-
haus (2003), Ding and Gentleman (2004)) actually reduce the number of variables
before applying the partial least squares idea, including only variables with a large
value of a t-statistic.

Nguyen and Roche (2002) standardize variables to have variance 1, select genes
based on the two-sample t-test with unequal variances, and use three components
in the partial least squares approach. In the second step of the classifier both
logistic regression and discriminant analysis are investigated. Five data sets (ovarian,
leukemia, lymphoma, colon) are being considered. The classifier generally works well
in the range of 50–1000 genes included.

Pérez-Enciso and Tenenhaus (2003) use a data set on breast cancer. As compared
to Nguyen and Roche (2002) an alternative (called VIP) to the t-statistic is used to
select genes.

Boulesteix (2004) uses the same approach as Nguyen and Roche (2002), and
makes a comparison with a number of other methods for five data sets with two
groups and four data sets with more than two groups. There is an indication in this
paper that the partial least squares approach can be of help in the situation where
the basic assumption of two groups no longer holds. Thus in the situation where
one of the two groups really contains two subgroups the use of one component in
the partial least squares method sometimes gives poor results, whereas the use of
two components can improve the performance.

In the above mentioned papers the original partial least squares approach was
used together with a second step based on the selected partial least squares compo-
nents. In Ding and Gentleman (2004) the two steps are integrated using ideas from
estimation in generalized linear models and taking into account that the response
variable is not continuous. A prior gene filtering is performed based on the usual
t–statistic.
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4 Estimating the threshold: crossvalidation

In the previous section we considered what is theoretically achievable using the
optimal threshold to improve the classifier. In practice the optimal value of the
threshold ∆ is not available to us, and the latter needs to be estimated from the
data.

A common approach to estimation of ∆ is to use crossvalidation. In the leave
one out (or (n + m)-fold) crossvalidation one observation is taken out and used as
test set, while the classifier is constructed from the remaining n+m−1 observations.
To describe this in detail consider the classifier based on D from (10). When the
observation xi is taken out let Dxi(xi, ∆) be the classification statistic based on
the training set (x1, . . . , xi−1, xi+1, . . . , xn, y1, . . . , ym) and evaluated at the “new
observation” xi, and with a similar notation when one of the y observations is left
out. We then look at the number of correctly classified samples

( n
∑

i=1

1(Dxi(xi, ∆) < 0),
m

∑

i=1

1(Dyi(yi, ∆) > 0)

)

as a function of ∆, and choose a suitable value of ∆ based on these numbers. When
the two groups are equally important one possibility is to use

1

2

{

1

n

n
∑

i=1

1(Dxi(xi, ∆) < 0) +
1

m

m
∑

i=1

1(Dyi(yi, ∆) > 0))

}

(23)

To avoid the discrete nature of the estimates in (23), we can use Dxi(xi, ∆) and
Dyi(yi, ∆) to estimate ξN , ξ̃N , and τN , and use the latter to estimate the probability
of correct classification. Thus we take

ξ̂N =
1

n

n
∑

i=1

Dxi(xi, ∆), ˆ̃ξN =
1

m

n
∑

i=1

Dyi(yi, ∆),

τ̂ 2
N =

1

n + m − 2

{ n
∑

i=1

(Dxi(xi, ∆) − ξ̂N)2 +
n

∑

i=1

(Dyi(yi, ∆) − ˆ̃ξN)2

}

,

and use
1
2

{

Φ(−ξ̂N/τ̂N) + Φ(− ˆ̃ξN/τ̂N)
}

(24)

as our estimate of the probability of correct classification. Here we give the same
weight to the two groups. In Figure 6 are some examples of the use of (23) and
(24). Generally these measures cannot be trusted in terms of giving a useful value
for the probability of correct classification, but they can still be helpful for choosing
a value of the threshold parameter ∆.

In Table 5 are average properties based on 1000 simulations. The table shows
that an appreciable part of the optimal improvement is achieved also in the case
where the threshold parameter is being estimated. The use of (23) or (24) give
almost the same results. The hard and soft threshold give different results. The
hard threshold, with an estimated threshold parameter, gives almost always an
improvement as compared to the case of no threshold. This is contrary to the
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Figure 6: Examples of crossvalidation based estimates of the probability of correct clas-
sification (POCC). In all four subplots n = m = 15, there are 20 differentiable expressed
variables, δ = 0.5 for 10 variables, δ = 1.0 for 7 variables, δ = 1.5 for 2 variables, and
one variable has δ = 2. The total number of variables is p = 1000 in the first column and
p = 10000 in the second column. The full drawn lines are for hard thresholding and the
dashed lines are for soft thresholding. The lines with no marks (except for a circle showing
the location of the maximum value) give the true probability of correct classification. The
lines marked with + give the crossvalidation errors from (23), and the lines marked by
bullets give (24).
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soft threshold where an appreciable fraction of the cases give a lower probability
of correct classification than the use of no threshold. Still, the median value is
higher for the soft threshold than for the hard threshold, especially so for the case
of p = 10000 variables. The column headed B in Table 5 will be explained in the
next section.

hard soft

p no max cv-d cv-e B max cv-d cv-e B

1000 75 91 88 (0) 88 (0) 89 (0) 92 88 (18) 89 (18) 90 (17)

10000 59 80 75 (0) 75 (0) 79 (1) 85 80 (15) 80 (14) 80 (14)

Table 5: Median probability of correct classification in percent using data dependent
threshold for the classification statistic D. Numbers are based on 1000 simulated
values with sample sizes n = m = 15 and with 20 differentiable expressed variables
as in Figure 6. The column no gives the probability of correct classification in the
case of no thresholding, and the column headed max gives the result using the
optimal threshold. The columns headed cv-d and cv-e are based on (23) and (24),
respectively. Thus, in these cases the threshold parameter is found by maximizing
(23) or (24). The column headed B is based on the Bayes modeling in Section 6.
The numbers in parentheses are the percentages of the simulated cases for which
the method used gives a lower probability than the use of no threshold.

5 Estimating POCC: crossvalidation

Above we used crossvalidation to choose a value of the threshold parameter ∆.
The idea was that from the estimates (23) or (24) of the probability of correct
classification we took the value ∆̂ of ∆ giving the highest value. Intuitively, it
is clear that the maximum of (24), say, will exaggerate the probability of correct
classification when using ∆̂ for the threshold. The examples in Figure 6 illustrate
this “overshoot”.

Let us try to understand the problem through a very simple model. Let vi,
i = 1, . . . , k, be a function that is estimated through v̂i = vi + ui. Let us assume
that the uis are independent and N(0, ω2) distributed. Let I = arg maxi v̂i. Then
the overshoot is

max
i

v̂i − vI .

We consider the case where vi = α + βi. The mean of the overshoot becomes
ωMk(β/ω), where Mk is given by

Mk(η) =
k

∑

j=1

∫ ∞

−∞
zϕ(z)

∏

i6=j

Φ(z + η(j − i))dz. (25)

Note that the value of α does not enter the mean of the overshoot and that β enters
through β/ω. Partial integration shows that M2(η) = exp(−η/4)/

√
π. Intuitively,

it is clear that for η = β/ω large the value of Mk(η) will be close to M2(η) since with
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a high probability maxi v̂i = max{v̂k−1, v̂k} due to the the structure vi = α + βi.
Values for Mk(η), obtained by numerical integration, are given in Table 6.

η 0 0.5 1 2

k = 2 0.54 0.53 0.44 0.21

k = 3 0.85 0.75 0.54 0.21

k = 4 1.03 0.85 0.56 0.21

k = 5 1.16 0.89 0.56 0.21

Table 6: The mean overshoot Mk(η) as given in 25.

Now, instead of (24) let us use Φ((−ξ̂N + ˆ̃ξN)/(2τ̂N)) as our estimate of the

probability of correct classification. Let v̂(∆) = (−ξ̂N + ˆ̃ξN)/(2τ̂N) be an estimate of
v(∆) = (−ξN + ξ̃N)/(2τN), where we have shown the dependency on the threshold
explicitly in v and v̂. Taking a discrete set of ∆ values we use v̂i = v̂(∆i). Let us now

make the rough approximation that the terms entering ξ̂N and ˆ̃ξN are independent
and normally distributed with mean a and variance b2. The mean and variance of
v̂i are then approximately

E(v̂i)) ≈
a

b

f − 1/4

f − 1
, V (v̂i)) ≈

f 2

4nm(f − 2)
+ (

a

b
)2[

f

f − 2
− (

f − 1/4

f − 1
)2].

If v̂i is roughly unbiased we have vi ≈ a/b, and if these do not vary much we replace
a/b by v̄ in the variance formula. Taking n = m we get approximately that the
variance of v̂i is

ω2 =
1

2n
+ (v̄)2 1

4n
. (26)

Realistic and interesting values of v̄ is in the range 1 to 2. To reduce the correlation
between v̂i (remember when deriving (25) the variables were assumed independent)
we take v̂i = v̂(i), i = 0, 1, 2, 3, 4. A realistic value of β is then in the range 0 to 0.1.
Combining this with (26) for moderate values of n we find from Table 6 that taking
Mk ≈ 1 gives a realistic value. Thus the overshoot is of the order

ω ≈ 1√
n

,

for v̄ ≈ 2.
There are many rough approximations in the above calculation so in Table 7 are

some mean values of the overshoot based on simulations.

6 Bayes modeling

The classifier D0 in (3) is obtained from the theoretical counterpart D̃ in (2) by in-
serting estimates for µj, µj + δjσj and σ2

j . Thus 3p parameters are being estimated
freely. An alternative to this is to use a Bayes model to regularize the parame-
ter estimation. One possibility is to take (σ2

j , µj, δj) independent and identically
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p n = m k=0 k=20 k=80

1000 15 0.35 (0.33) 0.29 (0.42) 0.35 (0.50)

30 0.30 (0.22) 0.17 (0.25) 0.25 (0.38)

10000 15 0.28 (0.34) 0.15 (0.44) 0.32 (0.56)

30 0.35 (0.24) 0.20 (0.32) 0.27 (0.34)

Table 7: The mean overshoot based on 100 simulated values. The threshold is found
by maximizing over the values ∆ = 0.4, 0.8, . . . , 4.0. The values in parentheses are
the standard deviations of the 100 simulated values.

distributed with

1

σ2
j

∼ 1

s2
0

χ2(d0)/d0,

µj|σ2
j ∼ N(µ0, τ

2σ2
j ),

δj|δj 6= 0, σ2
j ∼ N(0, v0σ

2
j ),

P (δj 6= 0) = p0.

This prior model has also been used in Smyth (2004) and previously in Lönnstedt
and Speed (2002). When the hyper parameters (d0, s

2
0, τ

2, v0, p0) have been estimated
a full Bayesian classifier can be constructed. Details of this classifier are given in
Appendix B. This approach is, however, not of main interest to us. Instead, we
want to explore the use of the Bayesian model as a help to establish the optimal
threshold in our classifier.

Let us first discuss how to estimate the hyper parameters. Estimates of d0 and
s2
0 are obtained from the empirical variances s2

j . Since s2
j |σ2

j ∼ σ2
j χ

2(f)/f and
1/σ2

j ∼ (1/s2
0)χ

2(d0)/d0 one has s2
j ∼ s2

0F (f, d0). Robust estimates of d0 and s2
0 are

obtained from the equations

M(F (f, d0))

IQR(F (f, d0))
=

M(s2)

IQR(s2)
and s2

0M(F (f, d0)) = M(s2),

where M is the median and IQR is the inter quartile range. Next, consider estimation
of the hyper parameters µ0 and τ 2 in µj ∼ N(µ0, τ

2σ2
j ). Since (nx̄j + mȳj)/(n + m)

has a symmetric distribution around µ0, we take

µ̂0 = M((nx̄ + mȳ)/(n + m)).

Furthermore, it is easy to see that

n(x̄j − µ0) + m(ȳj − µ0)

n + m

∣

∣

∣
σj ∼ (1 − p0)

[

N
(

0, σ2
j (1/(n + m) + τ 2)

)]

+ p0

[

N
(

0, σ2
j (1/(n + m) + τ 2 + (m/(n + m))2v0)

)]

,

so that

n(x̄j − µ0) + m(ȳj − µ0)
√

(n + m)s2
j

∼ (1 − p0)
[

{1 + (n + m)τ 2}1/2t(f)
]

(27)

+ p0

[

{1 + (n + m)(τ 2 + (m/(n + m))2v0)}1/2t(f)
]

,
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where (1 − p0)[F ] + p0[F2] denotes a mixture of the two distributions F1 and F2.
Define

t̃j =
n(x̄j − µ̂0) + m(ȳj − µ̂0)

√

(n + m)s2
j

.

Since in the applications we have in mind p0 is very small we use the first term of
(27) only and estimate τ 2 by solving

{1 + (n + m)τ 2}1/2 IQR(t(f)) = IQR(t̃j).

Finally, consider the fraction of expressed variables p0 and the scaled variance v0 of
the differential expression. We use the differences ȳj − x̄j together with s2

j for the

estimation. Let tj = (ȳ − x̄)/
√

s2
j(1/n + 1/m). Then

tj ∼ (1 − p0)[t(f)] + p0[{1 + nmv0/(n + m)}1/2t(f)]. (28)

It is clear from this formula, that when p0 is small there is little information in the
data to estimate p0 and v0. To illustrate the lack of information let us consider an
estimating equation obtained by equating the average of |tj| to the theoretical mean,
that is,

E(|t(f)|)
{

1 + p0[(1 + nmv0/(n + m))1/2 − 1]
}

=
1

p

p
∑

j=1

|tj|. (29)

The standard deviation of the average is roughly
√

0.4/p and the term to be esti-
mated is roughly η = 0.8p0[(1+nmv0/(n+m)1/2−1]. Let the number of differentiable
expressed variables be k so that p0 = k/p, and let v0 = 1. A few examples of the
standard deviation and the value of η are:

p = 1000 p = 10000

n = m k sd η sd η

10 20 0.02 0.02 0.006 0.002

10 80 0.02 0.09 0.006 0.009

20 20 0.02 0.04 0.006 0.004

20 80 0.02 0.15 0.006 0.015

If, instead, we look at the number of tjs with an absolute value greater than a chosen
cutoff x, we compare below the expected numbers from a t(f) distribution with the
expected numbers from the mixture distribution (28) for the case n = m = 15:

p = 1000 p = 10000

mixture mixture

x t(f) k = 20 k = 80 t(f) k = 20 k = 80

2 55 64 91 553 562 588

3 5.6 12 30 56 62 81

4 0.4 4.0 15 4.2 7.8 19
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To illustrate the meaning of these numbers, assume that v0 is known and only p0

has to be estimated. Consider the entry in the table above with x = 3 and k = 20.
The expected number from the mixture distribution is 12 and that from the t(f)
distribution is 5.6, which implies that in roughly 5% of the cases the estimate of p0

becomes zero. The performance of the maximum likelihood estimate of p0 with v0

fixed is illustrated below. We have taken n = m = 15 and v0 = 1 and simulated 100
samples with p0 = k/p. The following table gives the 10%, 50%, and 90% quantiles
of the estimated values of k:

p = 1000 p = 10000

k 10% 50% 90% 10% 50% 90%

20 13 24 35 10 31 47

80 74 90 106 74 104 132

These numbers show a bias towards larger values of p0 as well as a large spread
in the estimates. We can extend the maximum likelihood estimation to cover the
estimation of both p0 and v0. However, as for example (29) shows, the data mostly
supply information on a combination like p0[(1 + nmv0/(n + m)1/2 − 1]. When p0 is
very small it is probably better to fix v0, say from previous experience, and estimate
p0 only.

Having estimated the hyper parameters we want to use the posterior means of µj

and δj to calculate a posterior estimate of the probabilities of correct classification
(14) and (15). Let Ij be one if variable j is differentiable expressed and zero if it is
not differentiable expressed. The posterior means can be written as

E(µ|x̄, ȳ, s2) (30)

= E(µ|I = 0, x̄, ȳ, s2)P (I = 0|x̄, ȳ, s2) + E(µ|I = 1, x̄, ȳ, s2)P (I = 1|x̄, ȳ, s2),

and
E(δ|x̄, ȳ, s2) = +E(δ|I = 1, x̄, ȳ, s2)P (I = 1|x̄, ȳ, s2), (31)

where subscript j has been left out. In the proposition below subscript j is not
included either.

Proposition 6. Let I be one if a variable is differentiable expressed and zero if it
is not differentiable expressed. Define q(n,m) = n + m + 1/τ 2,

A =
nm(ȳ − x̄)2 + (nx̄2 + nȳ2)/τ 2

q(n,m)
,

and

B =
mn(ȳ − x̄)2/v0 + (nx̄2 + mȳ2)/(v0τ

2) + nmx̄2/τ 2

m(n + 1/τ 2) + q(n,m)/v0

.

We then have the following posterior statements

P (I = 0|x̄, ȳ, s2)

=
{

1 +
p0

1 − p0

[A + fs2 + d0s
2
0

B + fs2 + d0s2
0

](f+d0+2)/2( q(n,m)/v0

m(n + 1/τ 2) + q(n,m)/v0

∣

∣

)1/2}−1

,
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E(σ2|s2) =
fs2 + d0s

2
0

f + d0 − 2
,

E(µ|I = 0, x̄, ȳ, s2) =
nx̄ + mȳ

n + m + 1/τ 2
,

E(µ|I = 1, x̄, ȳ, s2) =
nx̄ + ȳ/(v0 + 1/m)

n + 1/(v0 + 1/m) + 1/τ 2
,

and

E(δ|I = 1, x̄, ȳ, s2) =
nm(ȳ − x̄) + mȳ/τ 2

(n + m + 1/τ 2)/v0 + m(n + 1/τ 2)
.

Proof. The joint density of (x̄, ȳ, s2, I, δ, µ, v), where v = 1/σ2, is
{

(1 − p0)
C√
2πσ2

v(f+d0+2)/2−1 exp{− 1
2σ2 f(x̄, ȳ)} I = 0,

p0
C

2πσ2
√

v0

v(f+d0+2)/2−1 exp{− 1
2σ2 [f(x̄, ȳ − δ) + δ2/v0]} I = 1,

(32)

where
f(x̄, ȳ) = n(x̄ − µ)2 + m(ȳ − µ)2 + µ2/τ 2 + fs2 + d0s

2
0, (33)

and

C =

√
nm(f/2)f/2(d0s

2
0/2)d0/2(s2)f/2−1

2πτΓ(f/2)Γ(d0/2)
. (34)

To find the posterior probability for I we integrate the first of (32) with respect to
µ and then v. To this end we write

f(x̄, ȳ) = q(n,m)
(

µ − nx̄ + mȳ

q(n,m)

)2

+ A + fs2 + d0s
2
0,

where A is given in the proposition. This shows that

µ|(I = 0, x̄, ȳ, s2, σ2) ∼ N
(nx̄ + mȳ

q(n,m)
,

σ2

q(n,m)

)

. (35)

After integrating over µ we get

(1 − p0)
C

√

q(n,m)
v(f+d0+2)/2−1 exp

{

− 1

2σ2
[A + fs2

0 + d0s
2
0]

}

,

and integration with respect to v gives

C1(1 − p0)[A + fs2
0 + d0s

2
0]

−(f+d0+2)/2, (36)

where

C1 = C
2(f+d0+2)/2

√

q(n,m)
. (37)

In a similar fashion, looking at the second expression in (32), we see that

µ|(I = 1, x̄, ȳ, s2, δ, σ2) ∼ N
(nx̄+m(ȳ − δ)

q(n,m)
,

σ2

q(n,m)

)

,

δ|(I = 1, x̄, ȳ, s2, σ2)

∼ N
( m[n(ȳ − x̄) + y/τ 2]

m(n + 1/τ 2 + q(n,m)/v0

,
σ2q(n,m)

m(n + 1/τ 2 + q(n,m)/v0

)

,

(38)
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and integration with respect to µ, δ, and v, gives

C1p0[B + fs2
0 + d0s

2
0]

−(f+d0+2)/2[1 + v0m(n + 1/τ 2)/q(n,m)]−1/2, (39)

where B is given in the proposition. Combining (36) and (39) the stated expression
for P (I = 0|x̄, ȳ, s2) is obtained.

From (35) follows

E(µ|I = 0, x̄, ȳ, s2) = (nx̄ + mȳ)/q(n,m).

Equation (38) gives

E(δ|I = 1, x̄, ȳ, s2) =
m[n(ȳ − x̄) + y/τ 2]

m(n + 1/τ 2 + q(n,m)/v0

,

and

E(µ|I = 1, x̄, ȳ, s2) = (nx̄+mȳ)/q(n,m) − m2[n(ȳ − x̄) + y/τ 2]

q(n,m)[m(n + 1/τ 2 + q(n,m)/v0]

=
nx̄ + ȳ/(v0 + 1/m)

n + 1/(v0 + 1/m) + 1/τ 2
.

Finally, the posterior distribution of v = 1/σ2 given s2 is a scaled χ2-distribution
with f +d0 degrees of freedom and with scaling constant (f +d0)/(fs2+d0s

2
0). From

this the conditional mean of σ2 = 1/v is easily obtained.

Combining the results of Proposition 6 with (30) and (31) it is possible to calcu-
late a posterior estimate of the probabilities of correct classification (14) and (15).
We then consider these as a function of the threshold ∆ and choose the value that
maximizes the average of the two probabilities. The result of using this procedure
can be seen in Table 5. Interestingly, it seems that this method improves the be-
haviour of the hard thresholding approach.

7 Three groups

For the case of three groups we consider instead of (1) the model

xj ∼











N(µj, σ
2
j ) group 1,

N(µj + δjσj, σ
2
j ) group 2,

N(µj + ηjσj, σ
2
j ) group 3.

For three groups it is convenient to change the notation. Thus, we let xr
i be the

ith observation in group r, i = 1, . . . , nr, r = 1, 2, 3. For the average we use x̄r,
and the variance estimate becomes s2

j = (
∑3

r=1

∑nr

i=1(x
r
ij − x̄r

j)
2)/(n − 3), where

n = n1 + n2 + n3. The maximum likelihood classifier, with estimates inserted for
the parameters, is

arg min
r

{ p
∑

j=1

(zj − x̄r
j)

2

s2
j

}

, (40)
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where z is the new observation to be classified. Define for r = 1, 2

Lr
0(z) =

p
∑

j=1

zj(x̄
3
j − x̄r

j)/s
2
j and κr

0(z) =

p
∑

j=1

[(x̄3
j)

2 − (x̄r
j)

2]/s2
j .

Then the classification (40) is equivalent to the rule











group 1 if L1
0 < κ1

0, L2
0 > L1

0 + κ2
0 − κ1

0,

group 2 if L2
0 < κ2

0, L2
0 < L1

0 + κ2
0 − κ1

0,

group 3 if L1
0 > κ1

0, L2
0 > κ2

0.

For the case of unequal sample sizes n1, n2, n3 we proceed as in Section 2.2 and
define for r = 1, 2

Lr(z) =
1

2

∑

j

(

1

nr

nr
∑

i=1

(zj − xr
ij)

x̄3
j − x̄r

j(i)

s2
j(x

r
i )

+
1

n3

n3
∑

i=1

(zj − x̄3
ij)

x̄3
j(i) − x̄r

j

s2
j(x

3
i )

)

, (41)

which corresponds to (8). The classification rule with this choice becomes











group 1 if L1 < 0, L2 > L1,

group 2 if L2 < 0, L2 < L1,

group 3 if L1 > 0, L2 > 0.

(42)

Having decided on (L1, L2) as the basic statistic for classification there are of course
other possibilities than the one in (42) for splitting the two-dimensional space into
three regions.

For thresholding we use the three t statistics

t12j =
x̄1

j − x̄2
j

√

s2
j(1/n1 + 1/n2)

, t13j =
x̄1

j − x̄3
j

√

s2
j(1/n1 + 1/n3)

, t23j =
x̄2

j − x̄3
j

√

s2
j(1/n2 + 1/n3)

.

This gives the possibility of using different thresholds as well as different combina-
tions of these in L1 and L2. When used in (41) the appropriate observation is left
out in the calculations of the t values. The simplest choice is to use the same genes
in the two statistics and the same threshold, so that we have the weight function

w(t) = 1(max{|t12|, |t13|, |t23|} > ∆)

in the case of hard thresholding.

8 Summary

In this paper I have illustrated that good classifiers can be build for high dimen-
sional measurements where only a small number of the variables are differentiable
expressed. In particular we have seen that thresholding can improve the performance
of the classifier. For small samples the crossvalidation error cannot be trusted, the
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overshoot can be large. If possible it would be good to have rules of thumb as to the
size of the overshoot. Nevertheless, the crossvalidation can still be used to select a
threshold in the classifier. Of course the best situation is to have a large independent
test set!

The investigations have been made for a simple theoretical model. In a mi-
croarray setting there are many noise terms, some of which introduce bias in the
measurements. Thus the investigations here show what can be achieved in an opti-
mal setting. In real life situations we must expect the classifiers to have higher error
rates than those obtained here.

A Variance of ξN when n 6= m

For the classifier L(z) in (8) the variance of ξN = EN(L) is

V (ξN) =
p

n2
c31 +

1

n
c32δ

2
• + c33δ

4
•.

The coefficients are given by

4c31 =
nf(f + 1)(f − 1)2

m(m − 1)(n − 1)(f − 3)(f − 5)
+ (n − 1)E[u1u2tu(1)tu(2)]

+
n2(m − 1

m
E[v1v2tv(1)tv(2)] − 2n2E[u1v1tu(1)tv(1)],

4c32 =
(fm + 2m − 1)(f − 1)2

m(m − 1)(f − 3)(f − 5)
+ (n − 1)E

u1u2

s2(u1)s2(u2)

+
n(m − 1)

m
E

2(v1 + v2) + v1v2 + (v̄(1) − ū)(v̄(2) − ū)

s2(v1)s2(v2)

− 2nE
u1[v1 + (v̄ − ū(1)) + (v̄(1) − ū)]

s2(u1)s2(v1)
,

4c33 =
(f − 1)2

m(f − 3)(f − 5)
+

m − 1

m
E

1

s2(v1)s2(v2)

−
[

E
1

s2(v1)

]2
,

where the notation is as in Lemma 4.

B Appendix: Bayes classifier

Here we consider the Bayes model presented in Section 6 and establish the posterior
probability for a new sample z to belong to a particular group. For convenience in
the notation we take µ0 = 0. In the final formula z, x̄, and ȳ must then be replaced
by z − µ0, x̄ − µ0, and ȳ − µ0. Also when considering one variable we leave out the
subscript j.

Consider first the case where z belongs to group 1, that is, z ∼ N(µ, σ2). The full
density for (z, I, x̄, ȳ, s2, µ, δ, v), with v = 1

σ2 , is similar to (32). The differences are
that f in (33) contains the extra term (z−µ)2, C in (34) has 2π in the denominator
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replaced by (2π)3/2, and in (32) the exponent of v is (f + d0 + 3)/2 − 1 instead of
(f +d0 +2)/2−1. Integrating the density for I = 0 with respect to µ and next with
respect to v gives (36) with the exponent (f + d0 + 2)/2 replaced by (f + d0 + 3)/2,
and where now q(n,m) = 1 + n + m + 1/τ 2,

A =
n(z − x̄)2 + m(z − ȳ)2 + nm(x̄ − ȳ)2 + (z2 + nx̄2 + mȳ2)/τ 2

q(n,m)
,

and in the expression (37) for C1 the exponent is (f+d0+3)/2 instead of (f+d0+2)/2.
When I = 1 integrating with respect to µ, δ, and v gives (39) with

B = A − m2[ȳ − (z + nx̄ + mȳ)/q(n,m)]2

1/v0 + m(1 + n + 1/τ 2)/q(n,m)
,

with the exponent (f + d0 + 2)/2 replaced by (f + d0 + 3)/2 as before and with
m(n + 1/τ 2) replaced by m(1 + n + 1/τ 2) in the last term of (39). The likelihood
when z belongs to group 1 therefore becomes

p
∏

j=1

C1j
1 − p0

[Aj + fs2
j + d0s2

0]
(f+d0+3)/2

(43)

×
{

1 +
1 − p0

p0

(Aj + fs2
j + d0s

2
0

Bj + fs2
j + d0s2

0

)(f+d0+3)/2( q(n,m)/v0

q(n,m)/v0 + m(1 + n + 1/τ 2)

)1/2}

.

When z belongs to group 2 the case I = 0, after integration over µ and v, gives
the same result as when z belongs to group 1. The case I = 1, after integration over
µ, δ, and v, is as above with B replaced by

B̃ = A − [mȳ + z − (1 + m)(z + nx̄ + mȳ)/q(n,m)]2

1/v0 + (1 + m)(n + 1/τ 2)/q(n,m)
,

and with m(1 + n + 1/τ 2) replaced by (1 + m)(1 + n + 1/τ 2). The likelihood when
z belongs to group 2 is then given by

p
∏

j=1

C1j
1 − p0

[Aj + fs2
j + d0s2

0]
(f+d0+3)/2

(44)

×
{

1 +
1 − p0

p0

(Aj + fs2
j + d0s

2
0

B̃j + fs2
j + d0s2

0

)(f+d0+3)/2( q(n,m)/v0

q(n,m)/v0 + (1 + m)(1 + n + 1/τ 2)

)1/2

.
}

From (43) and (44) the posterior probability of belonging to one of the two groups
is easily determined.
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