
05

THIELE CENTRE
for applied mathematics in natural science

THIELE CENTRE
for applied mathematics in natural science

Esscher transforms and the minimal entropy
martingale measure for exponential Lévy models
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Abstract

In this paper we offer a systematic survey and comparison of the Esscher martin-
gale transform for linear processes, the Esscher martingale transform for exponential
processes, and the minimal entropy martingale measure for exponential Lévy mod-
els and present some new results in order to give a complete characterization of
those classes of measures. We illustrate the results with several concrete examples
in detail.
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1 Introduction

Lévy processes combine great flexibility with analytical tractability for financial mod-
elling. Essential features of asset returns like heavy tails, aggregational Gaussianity, and
discontinuous price movements are captured by simple exponential Lévy models, that are
a natural generalization of the famous geometric Brownian motion. More realistic depen-
dence structures, volatility clustering etc. are easily described by models based on Lévy
processes.

Typically such models create incomplete markets; that means that there exist in-
finitely many martingale measures and equivalent to the physical measure describing the
underlying price evolution. Each of them corresponds to a set of derivatives prices com-
patible with the no arbitrage requirement. Thus derivatives prices are not determined
by no arbitrage, but depend on investors preferences. Consequently one approach to find
the ”correct” equivalent martingale measure, consists in trying to identify a utility func-
tion describing the investors preferences. It has been shown in many interesting cases,
maximizing utility admits a dual formulation: to find an equivalent martingale measure
minimizing some kind of distance to the physical probability measure given, [BF02].

For exponential utility the dual problem is the minimization of relative entropy [Fri00].
Therefore the minimal entropy martingale measures has attracted considerable interest
both, in a general, abstract setting, but also for the concrete exponential Lévy models.

∗Corresponding author
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Another popular choice for an equivalent martingale measure in the framework of
exponential Lévy processes is based on the Esscher transform, see [GS94].

The Esscher transform approach has been used to study the minimal entropy martin-
gale measure by [Cha99], [FM03], and [ES05]. It turned out, that this Esscher martingale
measure is different from the Esscher martingale measure of [GS94], and there was some
confusion in the literature.

In the paper [KS02], the authors introduce the Esscher martingale measure for expo-
nential processes and the Esscher martingale transform for linear processes to distinguish
the two kinds of Esscher transforms and clarify the issue.

In [ES05] the authors provide the main results on the minimal entropy martingale
measure for exponential Lévy processes in rigorous way, the relation to the Esscher mar-
tingale transform for the linear processes, an explanation of the structure preservation
property of the minimal entropy martingale measure, a generalization to the multivariate
case, and an application to a particular stochastic volatility model.

In the present note we present in a detailed and systematic way both the Esscher mar-
tingale transform for the exponential and the linear processes in the simple and concrete
setting of exponential Lévy models.

Then we provide the converse of some of the statements contained in [ES05], that
allows a complete characterization of the minimal entropy martingale measure by the
Esscher martingale transform for linear processes. We discuss in particular the case when
the minimal entropy martingale measure does not exist, and illustrate that in this case
the entropy has an infimum that is not attained. We think this could be relevant for
counterexamples related to the dual problem of exponential utility maximization.

We also present applications of the theory developed to some specific parametric mod-
els, namely the normal inverse Gaussian Lévy process, the variance gamma Lévy process,
and for illustrative purposes, a simple Poisson difference model, where all calculations can
be performed in elementary and explicit way.

In Section 2 we will discuss the Esscher transform for Lévy processes, the exponential
and logarithmic transforms, and both kinds of Esscher martingale measures.

In Section 3 the results about the minimal entropy martingale measure and the relation
with the Esscher martingale transform for linear processes will be recalled, and some new
results will be provided.

In Section 4 the examples are discussed in detail.
For the clarity of exposition and the continuity of the treatment we will postpone

longer proofs to the appendix.

2 The Esscher transform

2.1 The Esscher transform for random variables

The Esscher transform is originally a transformation of distribution functions: Given a
distribution function F (x) and a parameter θ the Esscher transform F θ(x) is defined by

dF θ(x) =
eθxdF (x)∫
eθydF (y)

, (2.1)
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provided the integral exists. If F (x) admits a density f(x) then F θ(x) has the density

f θ(x) =
eθxf(x)∫
eθyf(y)dy

. (2.2)

The transformation is named in honor of the Swedish actuary Fredrik Esscher, who in-
troduced it for a special case in [Ess32]. See [BE65, Section 13] for the early history and
further references. In the statistical literature the transformation is known as exponential
tilting.

The Esscher transform of probability measures is defined analogously: Given a prob-
ability space (Ω,F , P ), a random variable X, and a parameter θ the Esscher transform
P θ, sometimes also called Esscher measure, is defined by

dP θ =
eθXdP

E[eθX ]
, (2.3)

provided the expectation exists. This transformation depends on the parameter θ and the
random variable X. It should be specified clearly which θ and X are used, when talking
about the Esscher transform of P or the Esscher measure.

2.2 The Esscher transform for a Lévy process

The Esscher transform generalizes naturally to probability spaces carrying Lévy processes.
In the following let ’

d
=’ denote equality in distribution. Suppose (Ω,F , P ) is a probability

space, (Ft)t≥0 a filtration, satisfying the usual conditions, and (Xt)t≥0 is a Lévy process,
in the sense that

1. X has independent increments, i.e., Xt2−Xt1 is independent of Ft1 for all 0 ≤ t1 ≤ t2.

2. X has stationary increments, i.e, we have Xt2 −Xt1
d
= Xt2−t1 for all 0 ≤ t1 ≤ t2.

3. X0 = 0 a.s.

4. (Xt)t≥0 is stochastically continuous.

5. (Xt)t≥0 has càdlàg paths.

We shall also speak of a Lévy process (Xt)0≤t≤T , where T > 0 is a finite horizon, and the
meaning of this terminology is apparent, cf. [KS91, Definition 1.1, p.47].

To fix notation, let us recall a few concepts and facts related to Lévy processes. There
is a cumulant function κ(z), that is defined at least for z ∈ C with <z = 0, such that

E[ezXt ] = eκ(z)t. (2.4)

Let us fix a truncation function h(x). This can be any function with compact support that
satisfies h(x) = x in a neighborhood of x = 0, for example h(x) = xI|x|≤1, but sometimes
other choices are possible and simpler. The Lévy-Kintchine formula asserts

κ(z) = bz + c z2

2
+

∫
(ezx − 1− h(x)z)U(dx), (2.5)
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where b ∈ R, c ≥ 0, and U a positive measure on R \ {0}, called the Lévy measure. It
satisfies ∫

(1 ∧ x2)U(dx) <∞. (2.6)

We call (b, c, U) the Lévy triplet of X. We note, that b depends on h, but not c and U .
When E[X2

1 ] <∞ we may take h(x) = x. If the process X is of finite variation, which is
equivalent to ∫

|x|≤1

|x|U(dx) <∞, (2.7)

we can also use h(x) = 0.

Theorem 1. Suppose T > 0 and θ ∈ R such that

E[eθX1 ] <∞. (2.8)

Then
dP θ

dP
= eθXT−κ(θ)T (2.9)

defines a probability measure P θ such that P θ ∼ P and (X)0≤t≤T is a Lévy process under
P θ with triplet (bθ, cθ, U θ) given by

bθ = b+ θc+

∫
(eθx − 1)h(x)U(dx), (2.10)

cθ = c, (2.11)

U θ(dx) = eθxU(dx). (2.12)

Proof: [Shi99, Theorem 2, Section VII.3c, p.685] �

Let us denote expectation with respect to P θ by Eθ. We have Eθ[ezXt ] = eκθ(z)t for
0 ≤ t ≤ T , where

κθ(z) = κ(z + θ)− κ(θ). (2.13)

Remark 1. Let us write Q
loc∼ P if Q is a probability measure such that Q|FT

∼ P |FT
for

all T ≥ 0. If we do not consider T > 0 as a fixed number in the previous theorem, but set

dP θ
T

dP
= eθXT−κ(θ)T (2.14)

for all T ≥ 0, then (P θ
T )T≥0 defines a consistent family of measures. With the usual,

additional technical assumptions to apply the Kolmogoroff consistency theorem we can

define a measure P θ loc∼ P , such that (Xt)t≥0 becomes a Lévy process with triplet (bθ, cθ, U θ)
as above.

The measure P θ, if it exists, is called Esscher transform of P , or Esscher measure. Let
us stress, that it depends on the Lévy process X and on the parameter θ. Again, it should
be specified clearly which θ and X are used, when talking about the Esscher transform of
P . In a more explicit notation we could write

P θ = P θ·X . (2.15)

The Esscher transform for Lévy processes and its application to option pricing was pio-
neered by [GS94]. The Esscher transforms for a Lévy process are also studied in statistics
as an exponential family of processes, see [KL89].
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2.3 The Esscher martingale transforms in option pricing

In the context of option pricing only one particular choice of the parameter θ is of inter-
est: The one, such that the discounted asset price becomes a martingale under P θ. To
emphasize this aspect, that particular Esscher transform is called the Esscher martingale
transform.

In the option pricing literature two variants have been used, corresponding to two
different choices of the Lévy process X. Their close relation was clarified in [KS02]. In
that paper the authors introduced the names Esscher martingale transform for linear
processes and Esscher martingale transform for exponential processes to distinguish the
two variants. Moreover they generalized both concepts to arbitrary semimartingales, the
most general class of processes for (mainstream) continuous-time finance. We will discuss
both transforms for Lévy processes in detail in the next two subsections. In Section 4 two
concrete examples are worked out. At present we think of X as a Lévy process, but the
following definitions and properties of the exponential and logarithmic transform apply
to resp. hold true for arbitrary semimartingales starting at zero.

Suppose S0 > 0 is a constant, and the process (St)t≥0 defined by

St = S0e
Xt (2.16)

is modelling the discounted price of a traded asset. By Itô’s formula we obtain the
stochastic differential equation

dSt = St−dX̃t, (2.17)

where (X̃t)t≥0 is given by

X̃t =

∫ t

0

S−1
u−dSu. (2.18)

The process X̃ is called the exponential transform of X. Thus we can also write

St = S0E(X̃)t. (2.19)

We observe
∆X̃t = e∆Xt − 1 (2.20)

and thus ∆X̃ > −1. Conversely, if (X̃t)t≥0 satisfies ∆X̃ > −1 then the process (Xt)t≥0

defined by
Xt = ln E(X̃)t (2.21)

is called the logarithmic transform of X̃. Clearly the exponential and logarithmic trans-
form are inverse operations.

Theorem 2. Suppose X is a Lévy process, then its exponential transform X̃ is a Lévy
process with ∆X̃ > −1. Suppose conversely X̃ is a Lévy process with ∆X̃ > −1 then
its logarithmic transform X is a Lévy process. The characteristic triplets (b, c, U) and
(b̃, c̃, Ũ) with respect to the truncation function h are related by

b̃ = b+
1

2
c+

∫
(h(ex − 1)− h(x))U(dx) (2.22)

c̃ = c (2.23)

Ũ(dx) = (U ◦ g−1)(dx), (2.24)
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resp.

b = b̃− 1

2
c̃−

∫
(h(x)− h(ln(1 + x)))Ũ(dx) (2.25)

c = c̃ (2.26)

U(dx) = (Ũ ◦ g̃−1)(dx), (2.27)

where
g(x) = ex − 1, g̃(x) = ln(1 + x). (2.28)

Proof: [KS02, Lemma 2.7.2, p.400] �

Note that actually g̃ = g−1. Let us recall a few auxiliary results and some properties
for later usage. The Lévy measure U admits a density iff Ũ does, and

ũ(x) =
1

1 + x
u(ln(1 + x)) (2.29)

for x > −1, resp.
u(x) = exũ(ex − 1) (2.30)

for x ∈ R. We have the following properties:

• X is a compound Poisson process iff X̃ is,

• X is increasing resp. decreasing iff X̃ is so,

• X has finite variation iff X̃ has,

• X has infinite variation iff X̃ has.

For all z ≤ 0 we have
E[ezX̃1 ] <∞. (2.31)

Let us conclude this subsection with some (heuristic) intuition: The right tail of X̃t is
much heavier than the right tail of Xt. The left tail of X̃t is very light. Unless the right
tail of Xt is extraordinarily light we have E[ezX̃t ] = ∞ for all z > 0.

2.3.1 The Esscher martingale transform for exponential Lévy processes

Theorem 3. Suppose T > 0 and there exists θ] ∈ R such that

E[eθ]XT ] <∞, E[e(θ
]+1)XT ] <∞, (2.32)

and the equation
κ(θ] + 1)− κ(θ]) = 0 (2.33)

holds. Then
dP ]

dP
= eθ]XT−κ(θ])T , (2.34)
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defines an equivalent martingale measure for (St)0≤t≤T . The process (Xt)0≤t≤T is a Lévy
process under P ] with characteristic triplet (b], c], U ]), where

b] = b+ cθ] +

∫
(eθ]x − 1)h(x)U(dx), (2.35)

c] = c, (2.36)

U ](dx) = eθ]xU(dx). (2.37)

Proof: This follows from [KS02, Theorem 4.1, p.421], combined with Theorem 1 above.
�

Let us denote expectation with respect to P ] by E]. We have E][ezXt ] = eκ](z)t for
0 ≤ t ≤ T , where

κ](z) = κ(z + θ])− κ(θ]). (2.38)

The measure P ] is called the Esscher martingale transform for the exponential Lévy
process eX . If no θ] ∈ R satisfying (2.32) and (2.33) exists, we say that the Esscher
martingale transform for the exponential Lévy process eX does not exist. In the notation
above P ] = P θ]

where X is used in the Esscher transform, or more explicitly, P ] = P θ]·X .

Remark 2. The first condition in (2.32) is required to assure that P ] exists, the second to
assure that the asset price process S is integrable under P ]. The conditions are equivalent
to ∫

x<−1

eθ]xU(dx) <∞,

∫
x>1

e(θ
]+1)xU(dx) <∞. (2.39)

Condition (2.33) assures that X is a martingale under P ].

2.3.2 The Esscher martingale transform for linear Lévy processes

In view of equation (2.17) finding an equivalent (local) martingale measure for S is equiv-
alent to finding an equivalent (local) martingale measure for X̃.

Remark 3. Actually the term local is redundant in the context of Lévy processes. It can be
shown, that any Lévy process and any ordinary or stochastic exponential of a Lévy process,
that is a local martingale (or even a sigmamartingale), is automatically a martingale. This
observation is related to the property, that the first jump time of a Poisson process is a
totally inaccessible stopping time and one cannot control the size of the last jump for a
Lévy process stopped at a stopping time.

Theorem 4. Suppose T > 0 and there exists θ∗ ∈ R such that

E[|X̃T |eθ∗X̃T ] <∞, (2.40)

and the equation
κ̃′(θ∗) = 0 (2.41)

holds. Then
dP ∗

dP
= eθ∗X̃T−κ̃(θ∗)T , (2.42)
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defines an equivalent martingale measure for (St)0≤t≤T . The process (Xt)0≤t≤T is a Lévy
process under P ∗ with characteristic triplet (b∗, c∗, U∗), where

b∗ = b+ θ∗c−
∫

(h(x)eθ∗(ex−1) − h(ex − 1))U(dx), (2.43)

c∗ = c, (2.44)

U∗(dx) = eθ∗(ex−1)U(dx). (2.45)

Proof: This follows from [KS02, Theorem 4.4, p.423], combined with Theorem 1 and
Theorem 2 above. �

Let us denote expectation with respect to P ∗ by E∗. We have E∗[ezXt ] = eκ∗(z)t for
0 ≤ t ≤ T , but in this case we do not have a simpler expression for the cumulant function
κ∗(z) than the Lévy-Kintchine formula

κ∗(z) = b∗z + c∗
z2

2
+

∫
(exz − 1− h(x)z)U∗(dx). (2.46)

The measure P ∗ is called the Esscher martingale transform for the linear Lévy process
X̃. If no θ∗ ∈ R satisfying (2.40) and (2.41) exists, we say that the Esscher martingale
transform for the linear Lévy process X̃ does not exist. In the notation above P ∗ = P θ∗

where X̃ is used in the Esscher transform, or more explicitly, P ∗ = P θ∗·X̃ .

Remark 4. The condition (2.40) assures that P ∗ exists and that the asset price process
S is integrable under P ∗. The condition is equivalent to∫

x>1

eθ∗ex

U(dx) <∞. (2.47)

Condition (2.41) assures that X̃, and thus also S, is a martingale under P ∗.

2.4 Relations between the Esscher and other structure
preserving martingale measures for exponential Lévy
models

The Lévy-Itô decomposition tells us, that any Lévy process X with triplet (b, c, U) can
be written as

Xt = bt+Xc
t +

∫ t

0

∫
h(x)(µ− ν)(dx, ds) +

∫ t

0

∫
(x− h(x))µ(dx, ds), (2.48)

with Xc
t =

√
cWt, where W is a standard Brownian motion, with µ(dx, dt) the jump

measure of X, and ν(dx, dt) = U(dx)dt its compensator.

Remark 5. The first double integral on the right hand side of (2.48) is the stochastic
integral with respect to a compensated random measure, see [JS87, Definition II.1.27,
p.72] or [HWY92, p.301] for a precise description. Alternatively, one can avoid this
slightly technical concept from stochastic calculus for general semimartingales and rewrite
the expression as an explicit limit in terms of compound Poisson approximations to X,
see [Sat99, Section 6.33, p.217] and [CS02]. If X is of finite variation, then we have∫ t

0

∫
h(x)(µ− ν)(ds, dx) =

∑
s≤t

h(∆Xs)− t

∫
h(x)U(dx). (2.49)
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Suppose (Xt)0≤t≤T is a Lévy process under P and also under another measure P †.
Then we call the change of measure, or just the measure P †, structure preserving, if
(Xt)0≤t≤T is a Lévy process under P †.

Theorem 5. Suppose T > 0, ψ ∈ R, and y : R → (0,∞) is a function satisfying∫
(
√
y(x)− 1)2U(dx) <∞. (2.50)

Then

Ñt = ψXc
t +

∫ t

0

∫
(y(x)− 1)(µ− ν)(ds, dx) (2.51)

is well-defined and
dP †

dP
= E(Ñ)T (2.52)

defines a measure P † such that P † ∼ P and (Xt)0≤t≤T is a Lévy process under P † with
characteristic triplet (b†, c†, U †), where

b† = b+ cψ +

∫
h(x)(y(x)− 1)U(dx) (2.53)

c† = c (2.54)

U †(dx) = y(x)U(dx). (2.55)

A Proof is sketched in the appendix. �

It can be shown, that for F being the natural filtration of X, all structure preserving
measures are as in the theorem above.

Let us denote expectation with respect to P † by E†. We have E†[ezXt ] = eκ†(z)t for
0 ≤ t ≤ T , where

k†(z) =

(
b+ cψ +

∫
h(x)(y(x)− 1)U(dx)

)
z

+ c
z2

2
+

∫
(ezx − 1− h(x)z)y(x)U(dx). (2.56)

The process (St)0≤t≤T is a martingale under P † if∫
x>1

exy(x)U(dx) <∞ (2.57)

and

b+ c(ψ + 1
2
) +

∫
((ex − 1)y(x)− h(x))U(dx) = 0. (2.58)

Thus we see, that the Esscher transform for exponential Lévy processes uses the function
y(x) = eθ]x. The Esscher transform for linear Lévy processes uses y(x) = eθ∗(ex−1).
Structure preserving measure changes have

y(x) =
dU †

dU
(x). (2.59)
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3 The minimal entropy martingale measure for

exponential Lévy models

3.1 Definition of the minimal entropy martingale measure

Suppose (Ω,F , P ) is a probability space and Q is another probability measure on (Ω,F).
The relative entropy I(Q,P ) of Q with respect to P is defined by

I(Q,P ) =

{
EP

[
dQ
dP

ln
(

dQ
dP

)]
if Q� P ,

+∞ otherwise.
(3.1)

Note, that even if Q� P it might be the case that I(Q,P ) = +∞.
Suppose S is a stochastic process on (Ω,F , P ) modelling discounted asset prices. Let

Qa(S) =
{
Q� P

∣∣ S is a local Q-martingale
}
. (3.2)

A probability measure P̂ ∈ Qa(S) is called minimal entropy martingale measure for S, if
it satisfies

I(P̂ , P ) = min
Q∈Qa(S)

I(Q,P ) (3.3)

The minimum entropy martingale measure and related issues in a general semimartingale
setting have been introduced and thoroughly investigated in [Fri00], [BF02], [GR02], and
[CM03]. Note that many general results require locally bounded asset price processes,
and this is not the case for most Lévy processes of interest in our context.

Suppose G is a sub-sigmaalgebra of F . Then we set

IG(Q,P ) = I(Q|G, P |G). (3.4)

When working with a filtration (Ft) sometimes the notation

It(Q,P ) = IFt(Q,P ), (3.5)

is used and (It) is called the entropy process.

3.2 Main results on the minimum entropy martingale measure
for exponential Lévy processes

The minimal entropy martingale measure for exponential Lévy processes has been studied
by [Cha99] under the assumption of the existence of exponential moments. More general
results are provided in [FM03]. In this section we summarize their results, and add a
small contribution, namely the converse statement of the main result by [ES05], that
allows a complete characterization of the minimal entropy martingale measure as the
Esscher transform for the linear Lévy process X̃ in the univariate case.

We also discuss the case when the minimal entropy martingale measure does not
exist, and we compute the infimum of the entropies, that is not attained in this case.
This discussion could provide a basis for counterexamples in the context of dual problems
related to maximization of exponential utility.

Let us first summarize a few explicit computations for the entropy.
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Theorem 6. Suppose P ] is the Esscher martingale transform for the exponential Lévy
process eX , then

I(P ], P ) = (θ]κ′(θ])− κ(θ]))T. (3.6)

Suppose P ∗ is the Esscher martingale transform for the linear Lévy process X̃, then

I(P ∗, P ) = −κ̃(θ∗)T. (3.7)

Suppose P † is an equivalent martingale measure for eX , that corresponds to the determin-
istic and time-independent Girsanov parameters (ψ, y) with respect to X, then

I(P †, P ) =

[
1

2
cψ2 +

∫
(y(x) ln(y(x))− y(x) + 1)U(dx)

]
T. (3.8)

Proof: This is a reformulation of [CT04, Proposition 9.10, p.312]. �

A key assumption in the general theory is, that there is at least one equivalent martin-
gale measure with finite entropy. The next theorem shows, that, except for trivial cases,
when no equivalent martingale measure exists, this assumption is satisfied for exponential
Lévy models

Theorem 7. Suppose the Lévy process X is increasing or decreasing, but not constant,
then eX admits arbitrage. Otherwise eX admits no free lunch with vanishing risk, and
there is an equivalent martingale measure for eX with finite entropy, such that X remains
a Lévy process.

Proof: This theorem is proved in [Jak02] and [CS02], except for the assertion on finite
entropy. This is done in the appendix. See also [EJ97]. �

Now we are ready to state the main result, the characterization of the minimum
entropy martingale measure for the exponential Lévy process eX as the Esscher transform
for the linear Lévy process X̃.

Theorem 8. The minimum entropy martingale measure for the exponential Lévy process
eX exists iff the Esscher martingale measure for the linear Lévy process X̃ exists. If both
measures exist, they coincide.

Proof: In view of the previous theorem we can reformulate Theorem A of [ES05] for a
real-valued Lévy processX as follows: Suppose the minimal entropy martingale measure P̂
for the exponential Lévy process eX exists. ThenX is a Lévy process under P̂ . Theorem B
of [ES05] says: If the Esscher martingale measure for the linear Lévy process X̃ exists,
then it is the minimum entropy martingale measure for the exponential Lévy process eX .
In the appendix we show the converse: If the minimum entropy martingale measure for
the exponential Lévy process eX exists, then it is the Esscher martingale measure for the
linear Lévy process X̃. �

Let us now discuss existence. There is θ̄ ∈ [0,+∞] such that

E[|X̃1|eθX̃1 ] <∞ ∀θ < θ̄ (3.9)

and
E[|X̃1|eθX̃1 ] = ∞ ∀θ > θ̄ (3.10)

The expectation E[|X̃1|eθ̄X̃1 ] can be finite or infinite. Let us use the convention κ̃′(θ̄) =

+∞ if E[|X̃1|eθ̄X̃1 ] = +∞. If E[|X̃1|eθ̄X̃1 ] < +∞ then trivially E[eθ̄X̃1 ] < +∞ and κ̃(θ̄) is
a well-defined finite number.
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Corollary 1. If
inf
θ<0

κ̃′(θ) ≤ 0 (3.11)

and
κ̃′(θ̄) ≥ 0 (3.12)

then the minimum entropy martingale measure for eX exists and coincides with the Ess-
cher martingale measure for the linear Lévy process X̃.

Let us now discuss non-existence: If X is decreasing or increasing, but not constant
we have arbitrage, so let us exclude those trivial cases.

Theorem 9. Suppose the Lévy process X is neither increasing nor decreasing and

κ̃′(θ̄) < 0. (3.13)

Then the minimum entropy martingale measure does not exist,

inf
Q∈Qa(S)

I(Q,P ) = −κ̃(θ̄)T (3.14)

and there is a sequence of structure preserving equivalent martingale measures P n, such
that

lim
n→∞

I(P n, P ) = inf
Q∈Qa(S)

I(Q,P ). (3.15)

Proof: The proof is given in the appendix �

Interpretation: in the above situation the process eX is a supermartingale and we
must shift mass to the right. However this has to be done by reweighing the jumps with
y(x) = eθ(ex−1). Taking θ = θ̄ is not enough, but taking any θ > θ̄ is too much, as
integrability is lost. A more decent choice of y(x) is required.

Remark 6. So far we studied the minimum entropy martingale measure on a fixed hori-
zon T , that was implicit in the notation. To discuss the dependence on the horizon let us
briefly introduce the following more explicit notation: Let

Qa
T (S) =

{
Q� P

∣∣ (St)0≤t≤T is a local Q-martingale
}
. (3.16)

A probability measure P̂T ∈ Qa
T (S) is called minimal entropy martingale measure for the

process S and horizon T , if it satisfies

IT (P̂T , P ) = min
Q∈Qa

T (S)
IT (Q,P ). (3.17)

If we consider the problem for 0 < t ≤ T , then it follows that

P ∗
t = P ∗

T |Ft . (3.18)
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4 Exponential Lévy Examples

4.1 The normal inverse Gaussian Lévy process

The normal inverse Gaussian distribution NIG(µ, δ, α, β) with parameter range

µ ∈ R, δ > 0, α > 0, −α ≤ β ≤ α. (4.1)

is defined by the probability density

p(x) =
αδ

π
eδ
√

α2−β2+β(x−µ)K1(α
√
δ2 + (x− µ)2)√

δ2 + (x− µ)2
. (4.2)

Here K1 is the modified Bessel function of second kind and order 1, also known as Mac-
donald function. The cumulant function is

κ(z) = µz + δ
(√

α2 − β2 −
√
α2 − (β + z)2

)
, (4.3)

and it exists for
−α− β ≤ <(z) ≤ α− β. (4.4)

The Lévy density is

u(x) =
δα

π
eβx|x|−1K1(α|x|). (4.5)

If (Xt)t≥0 denotes a Lévy process, such that X1 ∼ NIG(µ, δ, α, β), then Xt ∼ NIG(µt, δt,
α, β) for all t > 0. Using the asymptotics [AS65, 9.7.2, p.378]

K1(z) =

√
π

2z
e−z

(
1 +O

(
1

z

))
(z →∞). (4.6)

we see that

p(x) ∼


A1x

−3/2e−(α−β)x x→ +∞

A2(−x)−3/2e(α+β)x x→ −∞
(4.7)

where

A1 =

√
α

2π
eδ
√

α2−β2+(α−β)µ, A2 =

√
α

2π
eδ
√

α2−β2−(α+β)µ. (4.8)

This shows that p(x) has semi-heavy tails, except for the following two extremal cases: If
β = α then the right tail is heavy, if β = −α then the left tail is heavy. If |β| < α then

E[X1] = µ+
δβ√
α2 − β2

, V[X1] =
δα2√
α2 − β2

3 . (4.9)

If |β| = α those moments do not exist. Using the asymptotics [AS65, 9.6.11 and 9.6.7,
p.375]

K1(z) = z−1
(
1 +O

(
z2 ln z

))
(z → 0). (4.10)

we obtain

u(x) ∼ δ

π
x−2 x→ 0, (4.11)

and this shows that the NIG Lévy process has infinite variation. We will also use

u(x) ∼


δ
√

α
2π
x−3/2e−(α−β)x x→ +∞

δ
√

α
2π

(−x)−3/2e(α+β)x x→ −∞.
(4.12)
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4.1.1 The Esscher transform for the exponential NIG process

Proposition 1. If

0 < α <
1

2
or α ≥ 1

2
, |µ| > δ

√
2α− 1 (4.13)

then the Esscher martingale measure P ] for the exponential process eX does not exist. If

α ≥ 1

2
, |µ| ≤ δ

√
2α− 1 (4.14)

then the Esscher martingale measure P ] for the exponential process eX does exist. The
Esscher parameter is then

θ] = −β − 1

2
− µ

2δ

√
4α2δ2

µ2 + δ2
− 1. (4.15)

and X is under P ] a NIG(µ, δ, α, β]) process, where

β] = −1

2
− µ

2δ

√
4α2δ2

µ2 + δ2
− 1. (4.16)

Proof: The Esscher transform P θ for the exponential NIG process exists always for

−α− β ≤ θ ≤ α− β. (4.17)

The process X is a NIG(µ, δ, α, β + θ) process under P θ. If 0 < α < 1
2
, then no P θ

produces integrability for eX , and thus P ] does not exist. If α ≥ 1
2
, the Esscher transform

P θ exists and eX is integrable under P θ for

−α− β ≤ θ ≤ α− β − 1. (4.18)

The function
f(θ) = κ(θ + 1)− κ(θ) (4.19)

is increasing on [−α− β, α− β − 1] with

f(−α− β) = µ− δ
√

2α− 1, f(α− β − 1) = µ− δ
√

2α− 1. (4.20)

Thus if |µ| > δ
√

2α− 1 then P ] does not exist. If µ ≤ δ
√

2α− 1 then there is a solution,
that can be computed explicitly as (4.16). Looking at the new cumulant function gives
the law of X under P ]. �

4.1.2 The Esscher transform for the linear process

Proposition 2. If

0 < α <
1

2
, or α ≥ 1

2
, α− 1 < β ≤ α, or α ≥ 1

2
, −α ≤ β ≤ α− 1, (4.21)

µ ≥ δ(
√
α2 − (β + 1)2 −

√
α2 − β2) (4.22)

then the Esscher martingale measure P ∗ for the linear process X̃, and thus the minimal
entropy martingale measure for eX does exist. If

α ≥ 1

2
, −α ≤ β ≤ α− 1, µ < δ(

√
α2 − (β + 1)2 −

√
α2 − β2) (4.23)

then the Esscher martingale measure P ∗ for the linear process X̃, and thus the minimal
entropy martingale measure for eX does not exist.
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Proof: The Esscher transform for the linear process X̃ exists for ϑ ≤ 0. We cannot
simplify the integral representation for the cumulant function and its derivative, and we
have to solve the martingale equation for ϑ numerically. For 0 < α < 1

2
, or if α ≥ 1

2
and

α− 1 < β ≤ α, we obtain from the results above, that

lim
ϑ→−∞

κ̃′(ϑ) = −∞, lim
ϑ→−0

κ̃′(ϑ) = +∞, (4.24)

thus, there is always a solution, and P ∗ exists. If α ≥ 1
2

and −α ≤ β ≤ α− 1, we obtain
from the results above, that

lim
ϑ→−∞

κ̃′(ϑ) = −∞, lim
ϑ→−0

κ̃′(ϑ) = µ+ δ(
√
α2 − β2 −

√
α2 − (β + 1)2). (4.25)

Thus, if µ < δ(
√
α2 − (β + 1)2 −

√
α2 − β2) then P ∗ does not exist, while for µ ≥

δ(
√
α2 − (β + 1)2 −

√
α2 − β2) it exists. �

4.1.3 Structure preserving measure changes

Any function y(x) with ∫
(
√
y(x)− 1)2eβx|x|−1K1(α|x|)dx <∞ (4.26)

gives a structure preserving change of measure. If (Xt)0≤t≤T ∼ NIG(µ, δ, α, β) under P ,
and (Xt)0≤t≤T ∼ NIG(µ′, δ′, α′, β′) under P ′, and P ′ ∼ P , then this implies µ′ = µ and
δ′ = δ. This change of measure is characterized by the function

y(x) = e(β
′−β)xα

′K1(α
′|x|)

αK1(α|x|)
. (4.27)

The martingale condition is

µ+ δ
[√

α′2 − β′2 −
√
α′2 − (β′ + 1)2

]
= 0. (4.28)

Conversely, all structure preserving equivalent measure changes are of this type. This
illustrates, that there are structure preserving changes of measure, that are not Esscher
transforms.

4.2 The variance gamma Lévy process

The variance gamma distribution V G(µ, λ, γ, β) with parameters

µ ∈ R, λ > 0, γ > 0, β ∈ R (4.29)

is defined by the probability density

p(x) =

√
2

π

γλ

Γ(λ)
√
β2 + 2γ

λ−1/2
eβ(x−µ)|x− µ|λ−1/2Kλ−1/2

(
|x− µ|

√
β2 + 2γ

)
. (4.30)

The cumulant function is

κ(z) = µz + λ ln

(
γ

γ − βz − z2/2

)
(4.31)
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and it exists for
−β −

√
β2 + 2γ < <(z) < −β +

√
β2 + 2γ. (4.32)

The Lévy density is
u(x) = λ|x|−1(e−c1xIx>0 + ec2xIx<0 (4.33)

where
c1 = −β +

√
β2 + 2γ, c2 = β +

√
β2 + 2γ. (4.34)

If (Xt) denotes a Lévy process, such that X1 ∼ V G(µ, λ, γ, β), then Xt ∼ V G(µt, λt, γ, β)
for all t > 0. We have

E[X1] =
λβ

γ
, V[X1] =

λ

γ

(
1 +

β2

γ

)
. (4.35)

Using again the asymptotics [AS65, 9.7.2, p.378] we see that

p(x) ∼


A1x

λ−1/2(e−c1x x→ +∞

A2x
λ−1/2ec2x x→ −∞

(4.36)

with some constants A1 and A2.
The Lévy density has the asymptotics

u(x) = λ|x|−1(1 +O(|x|)) (x→ 0) (4.37)

so the process is of infinite activity and of finite variation.

4.2.1 The Esscher transform for the exponential process

Proposition 3. If

β2 + 2γ ≤ 1

4
(4.38)

then the Esscher martingale measure P ] for the exponential process eX does not exist. If
β2 + 2γ > 1

4
then the Esscher martingale measure P ] for the exponential process eX does

exist. The Esscher parameter is then

θ] = −β − 1

ε
+

1

ε

√
1 + β2ε2 − ε+ 2γε2 (4.39)

where
ε = 1− eµ/λ (4.40)

and X is under P ] a V G(µ, λ, γ], β]) process, where

γ] = γ − βθ] − θ]2/2 (4.41)

and
β] = β + θ]. (4.42)

Proof: The Esscher transform P θ for the exponential VG process exists always for

−β −
√
β2 + 2γ < θ < −β +

√
β2 + 2γ. (4.43)
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The process X is a V G(µ, δ, α, β + θ) process under P θ. If β2 + 2γ ≤ 1
4
, then no such

P θ grants integrability for eX , and thus P ] does not exist. If β2 + 2γ > 1
4
, the Esscher

transform P θ exists and eX is integrable under P θ for

−β −
√
β2 + 2γ < θ < −β − 1 +

√
β2 + 2γ. (4.44)

The function
f(θ) = κ(θ + 1)− κ(θ) (4.45)

is increasing on (−β −
√
β2 + 2γ,−β −

√
β2 + 2γ) with f(θ) tending to −∞ resp. +∞

for θ tending to the left resp. right endpoint of this interval. Thus there is a solution,
that can be computed explicitly as (4.39). By looking at the new cumulant function we
can identify the law of X under P ]. �

4.2.2 The Esscher transform for the linear process

The Esscher martingale transform for the linear process and thus the minimal entropy
martingale measure has been discussed in [FM03, Example 3.3, p.524].

4.2.3 Structure preserving measure changes

Any function y(x) with ∫
(
√
y(x)− 1)2u(x)dx <∞ (4.46)

gives a structure preserving change of measure. If (Xt)0≤t≤T ∼ V G(µ, λ, γ, β) under P ,
and (Xt)0≤t≤T ∼ V G(µ†, λ†, γ†, β†) under P †, and P † ∼ P , then this implies µ† = µ and
λ† = λ. This change of measure is characterized by the function

y(x) = e−(c†1−c1)xI{x<0} + e(c
†
2−c2)xI{x<0}. (4.47)

where
c†1 = −β† +

√
β†2 + 2γ†, c†2 = β† +

√
β†2 + 2γ†. (4.48)

The martingale condition is

µ+ λ ln

(
γ†

γ† − β† − 1/2

)
= 0. (4.49)

4.3 The Poisson difference model

This model is not commonly used, but we think it is not completely unrealistic, at least
in comparison to other models, and allows the most explicit calculations.

Suppose returns are given by

Xt = µt+ α1N
1
t − α2N

2
t , (4.50)

where N1 and N2 are two independent standard Poisson processes with intensity λ1 > 0
resp. λ2 > 0, and µ ∈ R and α1 > 0 and α2 > 0 are parameters. Let us call this the
Poisson difference model DP (µ, α1, α2, λ1, λ2). We have

E[Xt] = (µ+ α1λ1 − α2λ2) t (4.51)
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and
V [Xt] = (α2

1λ
2
1 + α2

2λ
2
2)t. (4.52)

The cumulant function is

κ(z) = µz + λ1(e
α1z − 1) + λ2(e

−α2z − 1). (4.53)

Alternatively, this model can be described as compound Poisson processes

Xt = µt+
Nt∑

k=1

Yk. (4.54)

Here N is a standard Poisson process with intensity

λ = λ1 + λ2 (4.55)

and (Yk)k≥1 is an independent iid sequence with

P [Yk = α1] =
λ1

λ1 + λ2

, P [Yk = −α2] =
λ2

λ1 + λ2

. (4.56)

For numerical illustration we take annual parameters

µ = 0, α1 = 0.001, α2 = 0.001, λ1 = 20050, λ2 = 19950, (4.57)

and we assume 250 trading days. This yields daily returns with mean 0.0004 and standard
deviation 0.01265. In Figure 1 the histogram for daily returns is shown, in Figure 2 on
page 19 an intra-day path simulation is displayed.
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Figure 1: Probability function for the distribution of daily returns in the Poisson difference
model with µ = 0, α1 = 0.001, α2 = 0.001, λ1 = 20050, λ2 = 19950.
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Figure 2: A path simulation for one day in the Poisson difference model with µ = 0,
α1 = 0.001, α2 = 0.001, λ1 = 20050, λ2 = 19950.

4.3.1 The Esscher transform for exponential processes

The Esscher transform for exponential processes exists always, and the parameter satisfies

µ(θ+ 1) +λ1(e
α1(θ+1)− 1) +λ2(e

−α2(θ+1)− 1) = µθ+λ1(e
α1θ − 1) +λ2(e

−α2θ − 1). (4.58)

If µ = 0, which we will assume from now on, this equation can be solved elementarily and
we obtain

θ] =
1

α1 + α2

ln

[
λ2(1− e−α2)

λ1(eα1 − 1)

]
. (4.59)

Under P ] we have X ∼ DP (λ]
1, λ

]
2, α1, α2) where

λ]
1 = λ1

[
λ1(1− e−α2)

λ2(eα1 − 1)

] α1
α1+α2

, λ]
2 = λ2

[
λ2(1− e−α2)

λ1(eα1 − 1)

]− α2
α1+α2

. (4.60)

The entropy is
IT (P ], P ) = (θ]κ′(θ])− κ(θ]))T. (4.61)

4.3.2 The Esscher transform for linear processes

The exponential transform of X is

X̃t = α̃1N
1
t − α̃2N

2
t , (4.62)

where
α̃1 = eα1 − 1, α̃2 = 1− e−α2 . (4.63)

Thus X̃ ∼ DP (λ1, λ2, α̃1, α̃2), and the cumulant function is

κ̃(z) = λ1(e
α̃1z − 1) + λ2(e

−α̃2z − 1). (4.64)
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The solution to κ̃′(θ) = 0 is

θ∗ =
1

eα1 − e−α2
ln

[
λ2(1− e−α2)

λ1(eα1 − 1)

]
. (4.65)

Under P̃ ∗ we have X ∼ DP (λ∗1, λ
∗
2, α1, α2) where

λ∗1 = λ1

[
λ2(1− e−α2)

λ1(eα1 − 1)

] eα1−1

eα1−e−α2

, λ∗2 = λ2

[
λ2(1− e−α2)

λ1(eα1 − 1)

]− 1−e−α2

eα1−e−α2

. (4.66)

The entropy is
IT (P ∗, P ) = −κ̃(θ∗)T. (4.67)

A Proofs

A.1 Proof of Theorem 5

With y satisfying (2.50) we can define Ñ according to (2.51). The process Ñ is a Lévy
process and a martingale with Ñ0 = 0. In this case it is known that E(Ñ) is a proper
martingale, and E[E(Ñ)T ] = 1, so (2.52) indeed defines a probability measure P †.

To see that (Xt)0≤t≤T is a Lévy process with triplet (b†, c†, U †), let us define N as the
logarithmic transform of Ñ . We know, that N is also a Lévy process. This can be used
in an easy calculation to show that the characteristic functions of the finite dimensional
distributions have the required structure. �

Remark 7. Similar theorems on the change of measure for Lévy processes have been
proved and are available in many textbooks and articles, for example [Sat99, Theorem 33.1,
p.218], [EJ97], [ES05]. They differ slightly with respect to our statement. For example
some start with P † � P given, while we want to construct P † from given Girsanov

parameters (ψ, y). Some other use the canonical setting to achieve a measure P † loc∼ P ,
such that (Xt)t≥0 is a Lévy process, etc. Therefore we provided a sketch of the proof for
our formulation.

A.2 Proof of Theorem 7

In this proof we use the truncation functions

ha(x) = xI{|x|≤a} (A.1)

for a > 0 and denote the first characteristic with respect to ha by ba. So we have for the
cumulant function

κ(z) = baz + c
z2

2
+

∫
(ezx − 1− ha(x)z)U(dx). (A.2)

Using a structure preserving change of measure P 7→ P ′ with deterministic Girsanov
parameters (ψ, y) the new triplet (b′a, c

′, U ′) with respect to ha is given by

b′a = ba + cψ +

∫
ha(x)(y(x)− 1)U(dx), (A.3)

c′ = c, (A.4)

U ′(dx) = y(x)U(dx). (A.5)
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The new cumulant function is

κ′(z) = b′az + c′
z2

2
+

∫
(ezx − 1− ha(x)z)U

′(dx). (A.6)

The martingale condition is κ′(1) = 0, which means

ba + c

(
ψ +

1

2

)
+

∫
((ex − 1)y(x)− ha(x))U(dx) = 0. (A.7)

The entropy is

I(P ′, P ) =
1

2
cψ2 +

∫
(y(x) ln(y(x))− y(x) + 1)U(dx). (A.8)

Remark 8. We have for y ≥ 0 the inequality

(
√

(y)− 1)2 ≤ y ln y − y + 1, (A.9)

and thus, if a function y(x) satisfies∫
(y(x) ln y(x)− y(x) + 1)U(dx) <∞, (A.10)

then this implies the integrability condition (2.50) for in the corresponding structure pre-
serving change of measure.

Now we follow [CS02, p.18f] and consider six cases.
Case I. Suppose there exists a > 0 such that U((−∞, a)) > 0 and U((a,+∞)) > 0,

i.e., there are positive and negative jumps. Then we choose

ψ = 0, y(x) =


α x < −a
1 |x| ≤ a
βe−2x x > a,

(A.11)

where α and β are finite, positive constants, determined as follows: If

ba + c/2 +

∫
{|x|≤a}

(ex − 1− x)U(dx) ≤ 0 (A.12)

then

α = 1, β = −
ba + c/2 +

∫
{|x|≤a}(e

x − 1− x)U(dx) +
∫
{x<−a}(e

x − 1)U(dx)∫
{x>a}(e

x − 1)e−2xU(dx)
, (A.13)

otherwise

α = −
ba + c/2 +

∫
{|x|≤a}(e

x − 1− x)U(dx) +
∫
{x>a}(e

x − 1)e−2xU(dx)∫
{x<−a}(e

x − 1)U(dx)
, β = 1.

(A.14)
The entropy is

I(P ′, P ) =

∫
{x<−a}

(α lnα− α+ 1)U(dx)

+

∫
{x>a}

(
βe−2x(ln β − 2x)− βe−2x + 1

)
U(dx), (A.15)
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which is, in view of the integrability properties of U(dx), clearly finite.
Case II. Suppose ν((−∞, 0)) = 0 and

∫
0<x≤1

xU(dx) = ∞. Then we can find a > 0

such that ν((a,+∞)) > 0 and

ba +
c

2
+

∫
{0<x≤a}

(ex − 1− x)U(dx) < 0. (A.16)

We use

ψ = 0, y(x) =

{
1 x ≤ a
βe−2x x > a,

(A.17)

where β is a finite, positive constants, determined as

β = −
ba + c

2
+
∫
{0<x≤a}(e

x − 1− x)U(dx)∫
{x>a}(e

x − 1)e−2xU(dx)
. (A.18)

Obviously the entropy is finite.
Case III. Suppose U((−∞, 0)) = 0,

∫
0<x≤1

xU(dx) <∞, and c > 0. We take

ψ = −1

2
− 1

c

[
b1 +

∫
{0<x≤1}

(ex − 1− x)U(dx) +

∫
{x>1}

(ex − 1)e−2xU(dx)

]
(A.19)

and

y(x) =

{
1 x ≤ 1
e−2x x > 1,

(A.20)

The entropy is finite.
Case IV. Suppose U((−∞, 0)) = 0, U((0,+∞)) > 0,

∫
0<x≤1

xU(dx) < ∞, c = 0,

b0 < 0. We can find a > 0, such that U((a,+∞)) > 0 and

ba +

∫
{0<x≤1}

(ex − 1− x)U(dx) < 0. (A.21)

We proceed as in case II.
Case V. This case corresponds to a subordinator and is of no concern to us.
Case VI. This case covers Brownian motion, and the entropy is clearly finite.
Let us now consider the cases, where the Lévy measure is concentrated on the negative

real line.
Case II’. Suppose ν((0,+∞)) = 0 and

∫
−1≤x<0

xU(dx) = −∞. As

ba = b1 −
∫

{−1≤x<−a}

xU(dx) (A.22)

we can find a > 0 such that

ba +
c

2
+

∫
{−a≤x<0}

(ex − 1− x)U(dx) > 0. (A.23)

We use

ψ = 0, y(x) =

{
α x ≤ −a
1 x > a,

(A.24)
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where α is a finite, positive constants, determined as

α = −
ba + c

2
+
∫
{−a≤x<0}(e

x − 1− x)U(dx)∫
{x<−aa}(e

x − 1)U(dx)
. (A.25)

Obviously the entropy is finite.
Case III’. Suppose U((0,+∞)) = 0,

∫
−1≤x<0

xU(dx) > −∞, and c > 0. We take

ψ = −1

2
− 1

c

[
b1 +

∫
{−1≤x<0}

(ex − 1− x)U(dx) +

∫
{x<−1}

(ex − 1)U(dx)

]
(A.26)

and
y(x) = 1. (A.27)

The entropy is finite.
Case IV’. Suppose U((0,+∞)) = 0, U((−∞, 0)) > 0,

∫
−1≤x<0

xU(dx) > −∞, c = 0,

b0 > 0. We can find a > 0, such that U((−∞, a)) > 0 and

ba +

∫
{−1≤x<0}

(ex − 1− x)U(dx) > 0. (A.28)

We proceed as in case II’.
Case V’. This case corresponds to the negative of a subordinator and is of no concern

to us. �

A.3 Proof of Theorem 8

To prove Theorem 8 we first show two lemmas.

Lemma 1. Suppose X is neither decreasing nor increasing. Then

inf
θ<0

κ̃′(θ) < 0. (A.29)

Proof: Suppose that X has no negative jumps, no Brownian component, and finite
variation. Then

κ̃′(ϑ) = b̃+

∫ +∞

0

(eϑ(ex−1)(ex − 1)− h(ex − 1))U(dx). (A.30)

We can apply the Monotone Convergence Theorem. If X has negative jumps then there
is a number ε > 0, such that ∫ −ε

−∞
(ex − 1)U(dx) < 0. (A.31)

If X has a Brownian component, then X̃ has the same, and its second characteristic
satisfies c̃ > 0. Suppose ϑ ≤ −ε and let us use from now on in this proof the truncation
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function h(x) = xI|x| ≤ 1. We have

κ̃′(ϑ) = b̃+ c̃ϑ+

∫ −ε

−∞
(eϑ(ex−1) − 1)(ex − 1)U(dx)

+

∫ ln 2

−ε

(eϑ(ex−1) − 1)(ex − 1)U(dx) +

∫ +∞

ln 2

eϑ(ex−1)(ex − 1)U(dx) (A.32)

≤ b̃+ c̃ϑ+ (eϑ(e−ε−1) − 1)

∫ −ε

−∞
(ex − 1)U(dx) +

∫ +∞

ln 2

e−ε(ex−1)(ex − 1)U(dx).

(A.33)

This follows from elementary inequalities for the first and third integrand in (A.32), and
the observation that the second integrand is negative. Recalling c̃ ≥ 0 we obtain the
desired limit. Suppose now that X has no negative jumps, no Brownian component, but
infinite variation. Then ∫ ln 2

0

(ex − 1)U(dx) = ∞. (A.34)

We have

κ̃′(ϑ) = b̃+

∫ ln 2

0

(eϑ(ex−1) − 1)(ex − 1)U(dx) +

∫ +∞

ln 2

eϑ(ex−1)(ex − 1)U(dx). (A.35)

Applying Fatou’s Lemma to the first integral, and the Monotone Convergence Theorem
to the second we obtain the desired conclusion for θ → −∞. �

Lemma 2. Suppose X is neither increasing nor decreasing and the jumps of X are
bounded from above. Then θ̄ = +∞ and

sup
θ>0

κ̃′(θ) ≥ 0. (A.36)

Proof: Suppose the Lévy process X is neither increasing nor decreasing, and its jumps
are bounded from above. Then the jumps of X̃ are bounded from above and below and
X̃ has moments of all orders. Thus we can work with the truncation function h(x) = x.

Under the given assumptions E[|X̃1|eθX̃1 ] <∞ for all θ ∈ R. Suppose the jumps of X̃ are
bounded by r > 1. We have

κ̃(θ) = b̃θ + c̃
θ2

2
+

∫
(−1,0)

(eθx − 1− xθ)Ũ(dx) +

∫
(0,r]

(eθx − 1− xθ)Ũ(dx) (A.37)

and

κ̃′(θ) = b̃+ c̃θ +

∫
(−1,0)

(eθx − 1)xŨ(dx) +

∫
(0,r]

(eθx − 1)xŨ(dx) (A.38)

Case (i): Suppose there is a diffusion component or there are positive jumps. Then

lim
θ→+∞

c̃θ +

∫
(0,r]

(eθx − 1)xŨ(dx) = +∞ (A.39)

while
∫

(0,r]
(eθx − 1)xŨ(dx) remains bounded as θ → +∞. So κ̃′(θ) → +∞ as θ → +∞.

Case (ii): Suppose there is no diffusion component and there are no positive jumps.
Then

κ̃′(θ) = b̃+

∫
(−1,0)

(eθx − 1)xŨ(dx) (A.40)
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and

lim
θ→+∞

κ̃′(θ) = b̃−
∫

(−1,0)

xŨ(dx). (A.41)

As we are working with h(x) = x the expression on the right hand side is the linear drift of
X̃. Since we assumed that X, thus X̃ is not decreasing, this quantity has to be positive.
�

To complete the proof of Theorem 8 we need the following proposition.

Proposition 4. Suppose the minimum entropy martingale measure for the exponential
Lévy process eX exists. Then it is the Esscher martingale transform for the linear Lévy
process X̃.

Proof: Suppose X is neither increasing nor decreasing and its jumps are bounded
from above From Lemma 2 we see, that the Esscher martingale measure P ∗ for the linear
process X̃ exists. By [ES05, Theorem B] we conclude the minimal entropy measure exists
and coincides with P ∗.

It remains to treat the case, when the jumps of X are not bounded from above. For
ease of notation and without loss of generality we assume T = 1. Suppose the minimum
entropy measure exits. By [ES05, Theorem B] it is obtained via a structure preserving
change of measure with deterministic and time-independent Girsanov parameters (ψ0, y0)
with respect to X. They satisfy the martingale constraint

b+ c
(
ψ0 +

1

2

)
+

∫
((ex − 1)y0(x)− h(x))U(dx) = 0 (A.42)

and the minimal entropy is

I(0) =
1

2
cψ2

0 +

∫
(y0(x) ln y0(x)− y0(x) + 1)U(dx). (A.43)

Suppose A is an arbitrary compact subset of R \ {0}. Since y0(x) > 0 U -a.e. and y ln y −
y + 1 ≤ y for y ≥ e2 we can find r1 > (maxA)+ and r2 > r1 such that

0 <

∫
B

(ex − 1)y0(x)U(dx) <∞, (A.44)

where B = [r1, r2]. Let

α =

∫
A

(ex − 1)y0(x)U(dx), β =

∫
B

(ex − 1)y0(x)U(dx), (A.45)

and set

yδ(x) =

(
1 + δIA(x)− δα

β
IB(x)

)
y0(x). (A.46)

The pair (ψ0, yδ) is for

|δ| < β

1 + |α|
(A.47)

the Girsanov pair corresponding to changing to an equivalent martingale measure. The
entropy

I(δ) =

∫
(yδ(x) ln yδ(x)− yδ(x) + 1)U(dx) (A.48)
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must have a minimum at δ = 0. By splitting the integral into contributions from A, B,
and R\ (A∪B) we can justify by elementary arguments differentiation under the integral
sign. We have I ′(0) = 0, with

I ′(0) =

∫
ln y0(x)

(
IA(x)− α

β
IB(x)

)
y0(x)U(dx). (A.49)

In a similar way we can check I ′′(0) > 0. We can rewrite (A.49) as∫
A

y0(x) ln y0(x)U(dx) =
α

β

∫
B

y0(x) ln y0(x)U(dx). (A.50)

Let

θ =
1

β

∫
B

y0(x) ln y0(x)U(dx). (A.51)

Then (A.50) can we rewritten as∫
A

(ln y0(x)− θ(ex − 1))y0(x)U(dx) = 0. (A.52)

Now θ depends on B, and thus to some extent on A. But we can use the same B, thus
the same θ for any compact subset A′ ⊆ A. This implies

ln y0(x) = θ(ex − 1) (A.53)

U -a.e. on A. By considering an increasing sequence of compact sets approaching R \ {0}
we see that (A.53) holds U -a.e. That shows, that y0 corresponds to the Esscher martingale
transform for the linear Lévy process X̃. �

A.4 Proof of Theorem 9

We know from the assumptions, that κ̃′(θ̄) < 0. This implies E[|X̃1|eθ̄X̃1 ] < ∞. Thus

E[|X̃1|] < ∞, or equivalently,
∫

x>1
xŨ(dx) < ∞. We also have E[eθ̄X̃1 ] < ∞. Let us use

h(x) = xI|x|≤1 as truncation function. We consider changes of measure with Girsanov

parameters with respect to X̃ given by

ψ = θ̄, y(x) =

 eθ̄x x ≤ 1
eθnx 1 < x ≤ n
1 x > n,

(A.54)

with θn to be defined by the martingale condition as follows: The function

f̃(θ) = b̃+ c̃(θ̄+1/2)+

∫
x<1

(xeθ̄x−h(x))Ũ(dx)+

∫
1<x≤n

xeθxŨ(dx)+

∫
x>n

xŨ(dx) (A.55)

is increasing in θ. We have f̃(θ̄) < 0 and f̃(θ) → +∞ as θ → +∞, at least for sufficiently
large n. If we define θn to be a solution to f̃(θn) = 0, then θn is decreasing to θ̄ as n→∞.
Let P n denote the corresponding measure.

We have seen above
∫

x>1
xŨ(dx) < ∞, thus

∫
x>n

xŨ(dx) vanishes as n → ∞. From
f(θn) = 0 we conclude

lim
n→∞

∫
1<x≤n

xeθxŨ(dx) = −
[
b̃+ c̃(θ̄ + 1/2) +

∫
x<1

(xeθ̄x − h(x))Ũ(dx)

]
. (A.56)
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Since θn > θ̄ the integrand in the following integral is nonnegative, and by the Fatou
Lemma

lim
n→∞

∫
(eθnx − eθ̄x)I{1<x≤n}(x)Ũ(dx) = 0, (A.57)

and thus

lim
n→∞

∫
1<x≤n

eθnxŨ(dx) =

∫
eθ̄xŨ(dx). (A.58)

Without loss of generality let us assume T = 1. Then the entropy is

I(P n, P ) =
1

2
cθ̄2 +

∫
x≤1

(eθ̄x(θ̄x− 1)+1)Ũ(dx)+

∫
1<x≤n

(eθnx(θnx− 1)+1)Ũ(dx). (A.59)

∫
1<x≤n

(eθnx(θnx− 1) + 1)Ũ(dx) (A.60)

=

∫
1<x≤n

Ũ(dx) +

∫
1<x≤n

eθnxŨ(dx) + θn

∫
1<x≤n

xŨ(dx)−
∫

1<x≤n

eθnxŨ(dx).

Letting n→∞ we obtain from the previous arguments

lim
n→∞

I(P n, P ) = −κ̃(θ̄). (A.61)

So we have proved that the value κ̃(θ̄)T is approached by the entropy of a sequence of
equivalent martingale measures. Let us now show that this value is actually a lower bound
for the relative entropy. We follow the proof of Theorem 3.1 in[FM03, p.520]: Suppose
Q � P is a probability measure, such that (X̃)0≤t≤T is a local martingale under Q. Let
τn be a localizing sequence of stopping times, taking values in [0, T ] and tending Q-a.s.
to T . For m ≥ 1 let

X̌m
t =

∑
s≤t

∆X̃sI{1<∆X̃s≤m} (A.62)

and
X̄m

t = X̃t − X̌m
t . (A.63)

Then X̌m and X̄m are two independent Lévy processes with cumulant functions

κ̌m(z) =

∫
(1,m]

(ezx − 1)Ũ(dx) (A.64)

and
κ̄m(z) = κ̃(z)− κ̌m(z). (A.65)

We consider an arbitrary sequence θm increasing to θ̄, such that θm < θ̄ for all m ≥ 1. We
can find m0 ≥ 1 such that Ũ((1,m]) > 0 for all m ≥ m0. Let us define now for m ≥ m0

the measures Rm by
dRm

dP
= eNm

T , (A.66)

where
Nm

t = θmX̃t + εmX̌
m
t − κ̄m(θm)t− κ̌m(θm + εm)t (A.67)

and εm > 0 is chosen to satisfy
ERm

[X̃T ] = 0. (A.68)
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Clearly εm decreases as m→∞. We observe

ln
dRm

dP

∣∣∣∣
Fτn

= Nm
τn
. (A.69)

We have

IFT
(Q|P ) ≥ IFτn

(Q|P ) ≥ EQ

[
ln

(
dRm

dP

∣∣∣∣
Fτn

)]
= EQ[Nm

τn
]. (A.70)

The first and the second inequalities follow from well-known properties of the entropy,
see [FM03, Lemma 2.1 (2–3), p.314f]. Now X̃ stopped at τn is a martingale under Q and
thus EQ[X̃τn ] = 0. The process X̌m is nonnegative, and so

EQ[Nm
τn

] ≥ −(κ̄m(θm) + κ̌m(θm + εm))EQ[τn]. (A.71)

We have EQ[τn] → T by dominated convergence. Finally,

κ̄m(θm) + κ̌m(θm + εm) = κ̃(θm)− κ̌m(θm) + κ̌m(θm + εm) (A.72)

and

κ̌m(θm + εm)− κ̌m(θm) =

∫
1<x≤m

(eεmx − 1)eθmxŨ(dx). (A.73)

The integrand is nonnegative, and another application of Fatou’s Lemma shows that this
integral vanishes as m→∞. As κ̃(θm) → κ̃(θ̄) for m→∞ we conclude

I(Q,P ) ≥ −κ̃(θ̄)T (A.74)

and we are done. �
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