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Abstract

In this paper we offer a systematic survey and comparison of the Esscher martin-
gale transform for linear processes, the Esscher martingale transform for exponential
processes, and the minimal entropy martingale measure for exponential Lévy mod-
els and present some new results in order to give a complete characterization of
those classes of measures. We illustrate the results with several concrete examples
in detail.
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1 Introduction

Lévy processes combine great flexibility with analytical tractability for financial mod-
elling. Essential features of asset returns like heavy tails, aggregational Gaussianity, and
discontinuous price movements are captured by simple exponential Lévy models, that are
a natural generalization of the famous geometric Brownian motion. More realistic depen-
dence structures, volatility clustering etc. are easily described by models based on Lévy
processes.

Typically such models create incomplete markets; that means that there exist in-
finitely many martingale measures and equivalent to the physical measure describing the
underlying price evolution. Each of them corresponds to a set of derivatives prices com-
patible with the no arbitrage requirement. Thus derivatives prices are not determined
by no arbitrage, but depend on investors preferences. Consequently one approach to find
the ”correct” equivalent martingale measure, consists in trying to identify a utility func-
tion describing the investors preferences. It has been shown in many interesting cases,
maximizing utility admits a dual formulation: to find an equivalent martingale measure
minimizing some kind of distance to the physical probability measure given, [BF02].

For exponential utility the dual problem is the minimization of relative entropy [Fri00].
Therefore the minimal entropy martingale measures has attracted considerable interest
both, in a general, abstract setting, but also for the concrete exponential Lévy models.
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Another popular choice for an equivalent martingale measure in the framework of
exponential Lévy processes is based on the Esscher transform, see [GS94].

The Esscher transform approach has been used to study the minimal entropy martin-
gale measure by [Cha99], [FMO03], and [ES05]. It turned out, that this Esscher martingale
measure is different from the Esscher martingale measure of [GS94], and there was some
confusion in the literature.

In the paper [KS02], the authors introduce the Esscher martingale measure for expo-
nential processes and the Esscher martingale transform for linear processes to distinguish
the two kinds of Esscher transforms and clarify the issue.

In [ES05] the authors provide the main results on the minimal entropy martingale
measure for exponential Lévy processes in rigorous way, the relation to the Esscher mar-
tingale transform for the linear processes, an explanation of the structure preservation
property of the minimal entropy martingale measure, a generalization to the multivariate
case, and an application to a particular stochastic volatility model.

In the present note we present in a detailed and systematic way both the Esscher mar-
tingale transform for the exponential and the linear processes in the simple and concrete
setting of exponential Lévy models.

Then we provide the converse of some of the statements contained in [ES05], that
allows a complete characterization of the minimal entropy martingale measure by the
Esscher martingale transform for linear processes. We discuss in particular the case when
the minimal entropy martingale measure does not exist, and illustrate that in this case
the entropy has an infimum that is not attained. We think this could be relevant for
counterexamples related to the dual problem of exponential utility maximization.

We also present applications of the theory developed to some specific parametric mod-
els, namely the normal inverse Gaussian Lévy process, the variance gamma Lévy process,
and for illustrative purposes, a simple Poisson difference model, where all calculations can
be performed in elementary and explicit way.

In Section 2 we will discuss the Esscher transform for Lévy processes, the exponential
and logarithmic transforms, and both kinds of Esscher martingale measures.

In Section 3 the results about the minimal entropy martingale measure and the relation
with the Esscher martingale transform for linear processes will be recalled, and some new
results will be provided.

In Section 4 the examples are discussed in detail.

For the clarity of exposition and the continuity of the treatment we will postpone
longer proofs to the appendix.

2 The Esscher transform

2.1 The Esscher transform for random variables

The Esscher transform is originally a transformation of distribution functions: Given a
distribution function F(z) and a parameter § the Esscher transform F?(x) is defined by

e dF (z)

dF(z) = ————
/eede(y)

: (2.1)



provided the integral exists. If F'(x) admits a density f(z) then F°(z) has the density

fe(l') — eexf(x> )
/ e f(y)dy

The transformation is named in honor of the Swedish actuary Fredrik Esscher, who in-
troduced it for a special case in [Ess32]. See [BE65, Section 13] for the early history and
further references. In the statistical literature the transformation is known as exponential
tilting.

(2.2)

The Esscher transform of probability measures is defined analogously: Given a prob-
ability space (€2, F, P), a random variable X, and a parameter 6 the Esscher transform
PY, sometimes also called Esscher measure, is defined by

B e?XdpP

AP’ = Fr: (2.3)

provided the expectation exists. This transformation depends on the parameter # and the
random variable X. It should be specified clearly which # and X are used, when talking
about the Esscher transform of P or the Esscher measure.

2.2 The Esscher transform for a Lévy process

The Esscher transform generalizes naturally to probability spaces carrying Lévy processes.
In the following let 'L denote equality in distribution. Suppose (Q, F, P) is a probability
space, (F;)i>o a filtration, satisfying the usual conditions, and (X;);>¢ is a Lévy process,
in the sense that

1. X has independent increments, i.e., X;,— X, is independent of F;, forall 0 < ¢ < t,.
2. X has stationary increments, i.e, we have X;, — Xy, < Xi,—y, for all 0 <ty <ty

3. Xog=0 a.s.

4. (X¢)i>o is stochastically continuous.

5. (Xt)i>0 has cadlag paths.

We shall also speak of a Lévy process (X;)o<i<r, where T' > 0 is a finite horizon, and the
meaning of this terminology is apparent, cf. [KS91, Definition 1.1, p.47].

To fix notation, let us recall a few concepts and facts related to Lévy processes. There
is a cumulant function x(z), that is defined at least for z € C with Rz = 0, such that

E[e*Xt] = em?)t, (2.4)

Let us fix a truncation function A(z). This can be any function with compact support that
satisfies h(z) = 2 in a neighborhood of x = 0, for example h(x) = x1;<1, but sometimes
other choices are possible and simpler. The Lévy-Kintchine formula asserts

K(z) = bz + ¢+ / (¢ — 1 — h(2)2)U(dx), (2.5)



where b € R, ¢ > 0, and U a positive measure on R \ {0}, called the Lévy measure. It
satisfies

/(1 A 2?)U(dr) < oc. (2.6)

We call (b, c,U) the Lévy triplet of X. We note, that b depends on h, but not ¢ and U.
When E[X?] < co we may take h(x) = z. If the process X is of finite variation, which is
equivalent to

/ |z|U(dz) < oo, (2.7)
|lz|<1
we can also use h(z) = 0.

Theorem 1. Suppose T > 0 and 0 € R such that

E[e"1] < o0. (2.8)
Then s
P

= OXT—r(O)T (2.9)

defines a probability measure P’ such that P® ~ P and (X)o<i<r is a Lévy process under
P? with triplet (b, c?, U?) given by

v = b+ 0c+ /(e‘” — 1)h(z)U(dz), (2.10)

d =, (2.11)

Ul (dx) = " U (dx). (2.12)

Proof: [Shi99, Theorem 2, Section VII.3c, p.685] O

Let us denote expectation with respect to P’ by E?. We have E’[e*Xt] = e’ ()t for
0 <t<T, where
K (2) = k(2 +0) — k(). (2.13)

Remark 1. Let us write Q ~ P if Q is a probability measure such that Qlz, ~ P|x, for
allT'> 0. If we do not consider T' > 0 as a fived number in the previous theorem, but set

APy 0Xp—r(6)T

— = " 2.14
7p = ¢ (2.14)
for all T > 0, then (P2)r>o defines a consistent family of measures. With the usual,
additional technical assumptions to apply the Kolmogoroff consistency theorem we can
define a measure P* % P, such that (X;)i=o becomes a Lévy process with triplet (b9, ¢?, U?)
as above.

The measure P?, if it exists, is called Esscher transform of P, or Esscher measure. Let
us stress, that it depends on the Lévy process X and on the parameter 6. Again, it should
be specified clearly which # and X are used, when talking about the Esscher transform of
P. In a more explicit notation we could write

P? = poX, (2.15)

The Esscher transform for Lévy processes and its application to option pricing was pio-
neered by [GS94]. The Esscher transforms for a Lévy process are also studied in statistics
as an exponential family of processes, see [KL89).
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2.3 The Esscher martingale transforms in option pricing

In the context of option pricing only one particular choice of the parameter 6 is of inter-
est: The one, such that the discounted asset price becomes a martingale under P?. To
emphasize this aspect, that particular Esscher transform is called the Esscher martingale
transform.

In the option pricing literature two variants have been used, corresponding to two
different choices of the Lévy process X. Their close relation was clarified in [KS02]. In
that paper the authors introduced the names Esscher martingale transform for linear
processes and Esscher martingale transform for ezponential processes to distinguish the
two variants. Moreover they generalized both concepts to arbitrary semimartingales, the
most general class of processes for (mainstream) continuous-time finance. We will discuss
both transforms for Lévy processes in detail in the next two subsections. In Section 4 two
concrete examples are worked out. At present we think of X as a Lévy process, but the
following definitions and properties of the exponential and logarithmic transform apply
to resp. hold true for arbitrary semimartingales starting at zero.

Suppose Sy > 0 is a constant, and the process (S;):>o defined by

S, = Spe’t (2.16)

is modelling the discounted price of a traded asset. By Itd’s formula we obtain the
stochastic differential equation

dSt - St,dj(;t, (217)
where (Xt)tzo is given by
t
X, = / S1ds,. (2.18)
0
The process X is called the ezponential transform of X. Thus we can also write
Sy = SeE(X);. (2.19)
We observe 3
AX; = e — 1 (2.20)

and thus AX > —1. Conversely, if (X;);>o satisfies AX > —1 then the process (X;);0
defined by )

is called the logarithmic transform of X. Clearly the exponential and logarithmic trans-
form are inverse operations.

Theorem 2. Suppose X is a Lévy process, then its exponential transform X is a Lévy
process with AX > —1. Suppose conversely X isa Lévy process with AX > —1 then
its logarithmic transform X is a Lévy process. The characteristic triplets (b,c,U) and
(l;, c, U) with respect to the truncation function h are related by

b= b+ %c + /(h(e” — 1) = h(2))U(de) (2.22)
i=c (2.23)
Uldz) = (U o g~ V) (dx), (2.24)



resp.

b=0b— %5 — /(h(x) — h(In(1 4 2)))U(dx) (2.25)
c=¢ (2.26)
Uldz) = (U o g ") (dx), (2.27)
where
g(x) =¢e" —1, g(z) =1In(1 + x). (2.28)
Proof: [KS02, Lemma 2.7.2, p.400] O

Note that actually ¢ = g~*. Let us recall a few auxiliary results and some properties
for later usage. The Lévy measure U admits a density iff U does, and

i) = - i —u(in(1 + 2)) (2.29)

for x > —1, resp.
u(z) = e*u(e” — 1) (2.30)

for z € R. We have the following properties:
e X is a compound Poisson process iff X is,
e X is increasing resp. decreasing iff X is so,
e X has finite variation iff X has,
e X has infinite variation iff X has.

For all z < 0 we have i
E[e*] < 0. (2.31)

Let us conclude this subsection with some (heuristic) intuition: The right tail of X, is
much heavier than the right tail of X;. The left tail of X, is very light. Unless the right
tail of X, is extraordinarily light we have E[e*Xt] = oo for all z > 0.

2.3.1 The Esscher martingale transform for exponential Lévy processes

Theorem 3. Suppose T > 0 and there exists 0* € R such that

E["*T] < 00,  E[®+D¥7] < o0, (2.32)
and the equation
K(0F+1) — K(6F) =0 (2.33)
holds. Then ﬁ
apr 0 X1 —k(69)T
i K 2.34



defines an equivalent martingale measure for (Si)o<i<r. The process (Xi)o<i<r is a Lévy
process under P* with characteristic triplet (b, c*, U*), where

b = b+t + /(ef’“ff — 1)h(x)U(dx), (2.35)
¢ =c, (2.36)
U(dz) = " U(dz). (2.37)

Proof: This follows from [KS02, Theorem 4.1, p.421], combined with Theorem 1 above.
O

Let us denote expectation with respect to P* by E*. We have Ef[e*Xt] = e )t for
0<t<T, where
KH(2) = k(2 + 0%) — K(6). (2.38)

The measure P? is called the Esscher martingale transform for the exponential Lévy
process eX. If no #* € R satisfying (2.32) and (2.33) exists, we say that the Esscher
martingale transform for the exponential Lévy process e does not exist. In the notation
above P! = P% where X is used in the Esscher transform, or more explicitly, P! = poX.

Remark 2. The first condition in (2.32) is required to assure that P* exists, the second to
assure that the asset price process S is integrable under P*. The conditions are equivalent
to

/ U (dx) < o0, / 0 (dz) < oo, (2.39)
r<—1 z>1

Condition (2.33) assures that X is a martingale under P*.

2.3.2 The Esscher martingale transform for linear Lévy processes

In view of equation (2.17) finding an equivalent (local) martingale measure for S is equiv-
alent to finding an equivalent (local) martingale measure for X.

Remark 3. Actually the term local is redundant in the context of Lévy processes. It can be
shown, that any Lévy process and any ordinary or stochastic exponential of a Lévy process,
that is a local martingale (or even a sigmamartingale), is automatically a martingale. This
observation is related to the property, that the first jump time of a Poisson process is a
totally inaccessible stopping time and one cannot control the size of the last jump for a
Lévy process stopped at a stopping time.

Theorem 4. Suppose T' > 0 and there exists 8* € R such that
E[|Xr]e ¥7] < oo, (2.40)

and the equation

7(6%) =0 (2.41)

holds. Then i
di _ ee*XT—R(e*)T

2.42
= , (2.42)



defines an equivalent martingale measure for (Si)o<i<r. The process (Xi)o<i<r is a Lévy
process under P* with characteristic triplet (b*, c*, U*), where

b*=b+0"c— /(h(az)ee*(ez_l) — h(e® = 1))U(dz), (2.43)
" =c, (2.44)
U*(dx) = Dy (dx). (2.45)

Proof: This follows from [KS02, Theorem 4.4, p.423], combined with Theorem 1 and
Theorem 2 above. l

Let us denote expectation with respect to P* by E*. We have E*[e*Xt] = e ()t for

0 <t < T, but in this case we do not have a simpler expression for the cumulant function
k*(z) than the Lévy-Kintchine formula
2

K'(2) =0z + c*% - /(e“ —1—h(x)2)U"(dz). (2.46)

The measure P* is called the Esscher martingale transform for the linear Lévy process
X. If no 6* € R satisfying (2.40) and (2.41) exists, we say that the Esscher martingale
transform for the linear Lévy process X does not exist. In the notation above P* = P
where X is used in the Esscher transform, or more explicitly, P* = P?"X

Remark 4. The condition (2.40) assures that P* exists and that the asset price process
S is integrable under P*. The condition is equivalent to

/ e’ U(dx) < oo. (2.47)

r>1

Condition (2.41) assures that X, and thus also S, is a martingale under P*.

2.4 Relations between the Esscher and other structure
preserving martingale measures for exponential Lévy
models

The Lévy-1to decomposition tells us, that any Lévy process X with triplet (b,¢,U) can
be written as

Xt:bt+Xf+/0t/h(x)( — v)(dw, ds) + //x— p(dz, ds), (2.48)

with X = /cW,;, where W is a standard Brownian motion, with p(dz,dt) the jump
measure of X, and v(dz,dt) = U(dx)dt its compensator.

Remark 5. The first double integral on the right hand side of (2.48) is the stochastic
integral with respect to a compensated random measure, see [JS87, Definition 11.1.27,
p.72] or [HWY92, p.301] for a precise description. Alternatively, one can avoid this
slightly technical concept from stochastic calculus for general semimartingales and rewrite
the expression as an explicit limit in terms of compound Poisson approximations to X,

see [Sat99, Section 6.33, p.217] and [CS02]. If X is of finite variation, then we have

/Ot/h(a:)( )(ds,dz) = S h(AX,) —t/h(m)(](dx)' (2.49)

s<t



Suppose (X;)o<i<r is a Lévy process under P and also under another measure PT.
Then we call the change of measure, or just the measure P!, structure preserving, if
(Xi)o<t<r is a Lévy process under PT.

Theorem 5. Suppose T'> 0, ) € R, and y : R — (0,00) is a function satisfying

/( y(z) — 1)*U(dz) < oo. (2.50)

Then .
No=uxe+ [ e =1 = vids.do 2.51)
15 well-defined and

Pt .
= =€) (2.52)

defines a measure PT such that P ~ P and (X;)o<i<r is a Lévy process under P1 with
characteristic triplet (bf,ct, UT), where

bl =b+ e+ / h(x)(y(z) — 1)U(dx) (2.53)

' =c (2.54)

U'(dx) = y(x)U(dx). (2.55)

A Proof is sketched in the appendix. O

It can be shown, that for F being the natural filtration of X, all structure preserving
measures are as in the theorem above.

Let us denote expectation with respect to PT by Ef. We have Ef[e*Xt] = e @1 for
0 <t<T, where

) = (b vt [ Moot - D))
+ c% + / (€% — 1 — h(z)2)y(x)U(dz). (2.56)

The process (S;)o<i<r is a martingale under P if

/ 1 e"y(z)U(dx) < 0o (2.57)

and
b+c(y+3)+ /((e”” — Dy(z) — h(z))U(dx) = 0. (2.58)

Thus we see, that the Esscher transform for exponential Lévy processes uses the function
y(z) = ¢”*. The Esscher transform for linear Lévy processes uses y(z) = e (¢"~1),

Structure preserving measure changes have

T
o) = @) (2.59)



3 The minimal entropy martingale measure for
exponential Lévy models

3.1 Definition of the minimal entropy martingale measure

Suppose (£2, F, P) is a probability space and () is another probability measure on (2, F).
The relative entropy 1(Q, P) of @ with respect to P is defined by

_ [ Er[FW(P)] fQ<P,
HQ,P) = { +00 otherwise. (3.1)
Note, that even if @ < P it might be the case that I(Q, P) = +oc.

Suppose S is a stochastic process on (€2, F, P) modelling discounted asset prices. Let
Q.(5) ={Q < P| Sis alocal @-martingale}. (3.2)

A probability measure Pe Q,(9) is called minimal entropy martingale measure for S, if
it satisfies R
I(P,P)= min I(Q,P 3.3

(P.P)= min_1(Q.P) 33)
The minimum entropy martingale measure and related issues in a general semimartingale
setting have been introduced and thoroughly investigated in [Fri00], [BF02], [GR02], and
[CMO03]. Note that many general results require locally bounded asset price processes,
and this is not the case for most Lévy processes of interest in our context.

Suppose G is a sub-sigmaalgebra of F. Then we set

15(Q, P) = I(Qlg, Plg)- (3.4)

When working with a filtration (F;) sometimes the notation

L(Q,P)=1x(Q,P), (3.5)

is used and ([;) is called the entropy process.

3.2 Main results on the minimum entropy martingale measure
for exponential Lévy processes

The minimal entropy martingale measure for exponential Lévy processes has been studied
by [Cha99] under the assumption of the existence of exponential moments. More general
results are provided in [FMO03]. In this section we summarize their results, and add a
small contribution, namely the converse statement of the main result by [ES05], that
allows a complete characterization of the minimal entropy martingale measure as the
Esscher transform for the linear Lévy process X in the univariate case.

We also discuss the case when the minimal entropy martingale measure does not
exist, and we compute the infimum of the entropies, that is not attained in this case.
This discussion could provide a basis for counterexamples in the context of dual problems
related to maximization of exponential utility.

Let us first summarize a few explicit computations for the entropy.

10



Theorem 6. Suppose P! is the Esscher martingale transform for the exponential Lévy
process e, then

I(P*, P) = (6*s'(6°) — k(6")T. (3.6)
Suppose P* is the Esscher martingale transform for the linear Lévy process X, then
I(P*,P) = —R(0")T. (3.7)

Suppose P is an equivalent martingale measure for eX, that corresponds to the determin-
istic and time-independent Girsanov parameters (1, y) with respect to X, then

1
1P P) = [jei+ [ () ot - i) + D V@) 7 (3.5)
Proof: This is a reformulation of [CT04, Proposition 9.10, p.312]. O

A key assumption in the general theory is, that there is at least one equivalent martin-
gale measure with finite entropy. The next theorem shows, that, except for trivial cases,
when no equivalent martingale measure exists, this assumption is satisfied for exponential
Lévy models

Theorem 7. Suppose the Lévy process X 1is increasing or decreasing, but not constant,
then eX admits arbitrage. Otherwise e admits no free lunch with vanishing risk, and
there is an equivalent martingale measure for eX with finite entropy, such that X remains
a Lévy process.

Proof: This theorem is proved in [Jak02] and [CS02], except for the assertion on finite
entropy. This is done in the appendix. See also [EJ97]. O

Now we are ready to state the main result, the characterization of the minimum
entropy martingale measure for the exponential Lévy process e as the Esscher transform
for the linear Lévy process X.

Theorem 8. The minimum entropy martingale measure for the exponential Lévy process
eX exists iff the Esscher martingale measure for the linear Lévy process X emists. If both

measures exist, they coincide.

Proof: In view of the previous theorem we can reformulate Theorem A of [ES05] for a
real-valued Lévy process X as follows: Suppose the minimal entropy martingale measure P
for the exponential Lévy process e exists. Then X is a Lévy process under P. Theorem B
of [ES05] says: If the Esscher martingale measure for the linear Lévy process X exists,
then it is the minimum entropy martingale measure for the exponential Lévy process eX.
In the appendix we show the converse: If the minimum entropy martingale measure for
the exponential Lévy process eX exists, then it is the Esscher martingale measure for the

linear Lévy process X. 0
Let us now discuss existence. There is 6 € [0, +00] such that
E[| X" <00 VO <8 (3.9)

and o B
E[|X 1| =00 VO >0 (3.10)

The expectation E [|X1e?X1] can be finite or infinite. Let us use the convention /() =
+o0 if E[|X;]ef%1] = +oo. If E[|X;]e?%1] < +o00 then trivially E[e?%1] < +o00 and #(6) is
a well-defined finite number.

11



Corollary 1. If

. ~/ <
ér<1£/<c 0) <0 (3.11)
and B
7 (6) >0 (3.12)

then the minimum entropy martingale measure for e)f exists and coincides with the Ess-
cher martingale measure for the linear Lévy process X .

Let us now discuss non-existence: If X is decreasing or increasing, but not constant
we have arbitrage, so let us exclude those trivial cases.

Theorem 9. Suppose the Lévy process X is neither increasing nor decreasing and
&(0) < 0. (3.13)
Then the minimum entropy martingale measure does not exist,

Qnf Q. P) = k()T (3.14)

and there is a sequence of structure preserving equivalent martingale measures P", such
that

lim I(P",P)= inf I(Q,P). 3.15
TP P) = (Jalg) 19 ) (3.15)
Proof: The proof is given in the appendix O

Interpretation: in the above situation the process eX is a supermartingale and we

must shift mass to the right. However this has to be done by reweighing the jumps with
y(r) = ¢~V Taking = 6 is not enough, but taking any 6 > @ is too much, as
integrability is lost. A more decent choice of y(z) is required.

Remark 6. So far we studied the minimum entropy martingale measure on a fixed hori-
zon T, that was implicit in the notation. To discuss the dependence on the horizon let us
briefly introduce the following more explicit notation: Let

95(S) = {Q < P | (St)o<i<r is a local Q-martingale}. (3.16)

A probability measure Pre Q5.(S) is called minimal entropy martingale measure for the
process S and horizon T, if it satisfies

IAPRP):Qég%fﬂQJﬂ. (3.17)
T

If we consider the problem for 0 <t < T, then it follows that

P = Pls,. (3.18)
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4 Exponential Lévy Examples

4.1 The normal inverse (GGaussian Lévy process

The normal inverse Gaussian distribution NIG(u, d, v, 3) with parameter range

peR, 0>0, a>0 —-a<pf<a. (4.1)
is defined by the probability density
p(z) = A s\ e pe—n Kr(ay/ 0% + (x — p)?) (4.2)
. T

Here K7 is the modified Bessel function of second kind and order 1, also known as Mac-
donald function. The cumulant function is

K(2) :,uz—l—5<\/a2 — Va2 — (B +2) ) (4.3)
and it exists for
—a—[F <Rz <a-p. (4.4)
The Lévy density is
Yel
u(zr) = ?eﬁx|x| 'K (alz)]). (4.5)

If (X¢)i>0 denotes a Lévy process, such that X; ~ NIG(u, d, «, ), then X; ~ NIG(ut, ét,
a, 3) for all t > 0. Using the asymptotics [AS65, 9.7.2, p.378§]

Ki(z) = \/ge—z (1 +0 G)) (2 = o0). (4.6)

Ayx—3/2e~ (@B x — 400

p(z) ~ (4.7)
AQ(_x)—3/2e(a+B)z T — —00

Al — ;65\/a2,52+(a75)#7 A2 — 2&651 /a27527(a+5),u' (48)
s \/ s

This shows that p(z) has semi-heavy tails, except for the following two extremal cases: If

[ = « then the right tail is heavy, if § = —a then the left tail is heavy. If |5] < « then
) da

—5, VX = ——=. (4.9)

a? — 52 /o — 32

If |#| = a those moments do not exist. Using the asymptotics [AS65, 9.6.11 and 9.6.7,

p.375]

we see that

where

E[Xi] = p+

Ki(z)=2z""(1+0(s’Inz)) (2 —0). (4.10)
we obtain 5
u(z) ~ =2 r — 0, (4.11)
T
and this shows that the NIG Lévy process has infinite variation. We will also use

() PR e (4.12)
u\xr) ~ .
(5\/ 3/26(0‘—"6 xr — —OQ.
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4.1.1 The Esscher transform for the exponential NIG process
Proposition 1. If
1 1
0<a<§ or azi, || > d0v2a — 1 (4.13)

then the Esscher martingale measure P* for the exponential process eX does not exist. If
1
a> 3 lp| <ov2a—1 (4.14)

then the Esscher martingale measure P* for the exponential process eX does exist. The

Esscher parameter is then
1 u | 4a26?
= —p——— [ —— —1. 4.15
g 2 20 \/ p? 4+ 62 (4.15)

and X is under P* a NIG(u,d, a, 3*) process, where

1 u | 4a26?
f_ _ - _ 7 _—
Bt =3 25’/u2+52 1. (4.16)

Proof: The Esscher transform P? for the exponential NIG process exists always for
—a—pf<0<a-p. (4.17)

The process X is a NIG(u,d,a, 3 + 0) process under PY. If 0 < a < %, then no P?

produces integrability for e¥, and thus P* does not exist. If o > %, the Esscher transform
P exists and e* is integrable under P? for

—a—f<f<a-pF-1 (4.18)
The function
f(0) =r(0+1)—k(0) (4.19)
is increasing on [—a — 3, a — [ — 1] with
flca=B)=p—06V2a -1, fla—=B—1)=p—0v2a — 1. (4.20)

Thus if || > §+v/2a — 1 then P* does not exist. If u < §v/2a — 1 then there is a solution,
that can be computed explicitly as (4.16). Looking at the new cumulant function gives
the law of X under P*. U

4.1.2 The Esscher transform for the linear process

Proposition 2. If
, —a<fB<a-1, (4.21)
n>6(va? —(B+1)? = a2~ 5?) (4.22)

then the Esscher martingale measure P* for the linear process X, and thus the minimal
entropy martingale measure for eX does exist. If

042%, —a<pB<a-1, p<dé(/a?—(B+1)2— /a2 - [?) (4.23)

N

,a—1<f<a or a>

N —

1
0<oz<§, or o>

then the Esscher martingale measure P* for the linear process X, and thus the minimal
entropy martingale measure for eX does not exist.

14



Proof: The Esscher transform for the linear process X exists for ¢ < 0. We cannot
simplify the integral representation for the cumulant function and its derivative and we
have to solve the martingale equation for ¥ numerically. For 0 < « < Lorifa>1 5 and
a—1 < [ < a, we obtain from the results above, that

lim &'(0) = —o0, lim &'(¢) = +oo, (4.24)
¥——00 ¥——0
thus, there is always a solution, and P* exists. If a > % and —a < 3 < a — 1, we obtain
from the results above, that

Jim #(0) =—oco,  lim F(V) = p+ S(Var— 32 —/a2—(B+1)2).  (4.25)
Thus, if p < 6(\/a?— (B+1)2 — \J/a? — [32) then P* does not exist, while for u >
§(y/a2 — (B +1)? \/a2 ﬁQ it exists. O

4.1.3 Structure preserving measure changes

Any function y(z) with
/( y(x) — 1)%e 2| K (a|z])dr < oo (4.26)

gives a structure preserving change of measure. If (X;)o<i<r ~ NIG(y, 0, «, 5) under P,
and (Xy)o<t<r ~ NIG(¢/, 0", 0/, 3") under P’, and P’ ~ P, then this implies p/ = p and
0" = 9. This change of measure is characterized by the function

(8'—B)z o' Ky (o|z])

Y ACER (4.27)

y(r) =
The martingale condition is

o+ (5[\/0/2 — 32— /a2 — (3 + 1)2] =o0. (4.28)

Conversely, all structure preserving equivalent measure changes are of this type. This
illustrates, that there are structure preserving changes of measure, that are not Esscher
transforms.

4.2 The variance gamma Lévy process

The variance gamma distribution VG(u, A, v, ) with parameters
peR, A>0, v>0, [eR (4.29)

is defined by the probability density

2 0 o - /32 1 om
p(x) =1/= /\—1/266( M)|$ - M|A 1/2K>\,1/2 <|$ — pl/ B3+ 27) . (4.30)
TT(NV B+ 2y

The cumulant function is

k(2) = pz + Aln <7_ﬁ+_22/2> (4.31)
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and it exists for

06—+ 2y <R(z) < =B+ P>+ 27. (4.32)

U((L’) - )"x|_1(€_cwlx>0 + eczwlx<0 (433)

c1=—0+ 2+ 27, co=[F+\[?+27. (4.34)

If (X;) denotes a Lévy process, such that X; ~ VG(u, A, 7, ), then X; ~ VG(ut, \t, v, 3)
for all t > 0. We have

The Lévy density is

where

E[X,] = %, V[X,] = 3 (1 + %2) . (4.35)

Using again the asymptotics [AS65, 9.7.2, p.378] we see that

A2 (ema® g — oo
p() ~ (436)

Aga?12e20 1 o

with some constants A; and As.
The Lévy density has the asymptotics

u(z) = Mz~ (1 + O(|z|)) (r —0) (4.37)

so the process is of infinite activity and of finite variation.

4.2.1 The Esscher transform for the exponential process

Proposition 3. If

1
342y < 1 (4.38)
then the Esscher martingale measure P* for the exponential process eX does not exist. If
B2+ 2y > }1 then the Esscher martingale measure P* for the exponential process eX does
exist. The Esscher parameter is then

1 1
0 = —3— =4 —\/1+ 322 — e 4 2y€? (4.39)
e €

where
e=1—et? (4.40)

and X is under P* a VG(u, X\, 7%, 3%) process, where
=5 — BO* — 6% )2 (4.41)

and
B =B+ 6. (4.42)

Proof: The Esscher transform P? for the exponential VG process exists always for

—B—FP+2y<b0<—-B+3+27. (4.43)
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The process X is a VG (u,d,a, 3 + 0) process under P?. If 32 + 2y < %, then no such
P? grants integrability for e*, and thus P* does not exist. If 3% 4+ 2y > 1, the Esscher
transform P? exists and e¥ is integrable under P? for

B r2y<b<-B-1+VFPTt 2. (4.44)

The function
f(O)=r(0+1)—k(0) (4.45)

is increasing on (—03 — /(% + 27, —0 — /% + 27) with f() tending to —oo resp. +00
for 6 tending to the left resp. right endpoint of this interval. Thus there is a solution,
that can be computed explicitly as (4.39). By looking at the new cumulant function we
can identify the law of X under P?. O
4.2.2 The Esscher transform for the linear process

The Esscher martingale transform for the linear process and thus the minimal entropy
martingale measure has been discussed in [FM03, Example 3.3, p.524].

4.2.3 Structure preserving measure changes

Any function y(x) with

/ (V@) — 1)2u(z)dz < oo (4.46)

gives a structure preserving change of measure. If (X;)o<i<r ~ VG(p, A, 7, 3) under P,
and (Xy)o<i<r ~ VG(u', \T,97, 7) under P, and PT ~ P, then this implies u' = p and
A" = X. This change of measure is characterized by the function

y(;p) = e_(cl{—c1)x[{x<0} + e(cg—cz)x[{x<0}‘ (447)

where
ol = -8+ /B2 + 29, ch =BT+ /B2 + 29t (4.48)

The martingale condition is

+

4.3 The Poisson difference model

This model is not commonly used, but we think it is not completely unrealistic, at least
in comparison to other models, and allows the most explicit calculations.
Suppose returns are given by

X, = ut + oy N} — apN?, (4.50)

where N! and N? are two independent standard Poisson processes with intensity A\; > 0
resp. Ao > 0, and p € R and oy > 0 and oy > 0 are parameters. Let us call this the
Poisson difference model DP(u, oy, ag, A1, A2). We have

E[Xt] = (M + Oél/\l — &2)\2) t (451)
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and
VX, = (a3A] + a3 A3)t.

The cumulant function is
K(z) = pz + M (e — 1) + Aa(e 2 —1).

Alternatively, this model can be described as compound Poisson processes

N¢
Xp=pt+ ) Y
k=1

Here N is a standard Poisson process with intensity
)\ - )\1 + )\2

and (Yj)r>1 is an independent iid sequence with

)\1 )\2
PYy,=o)|=———, PlYp=—-=—"—.
Me=al=3y A= el =3
For numerical illustration we take annual parameters
w=0, a3 =0.001, ay;=0.001, X =20050, A= 19950,

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

and we assume 250 trading days. This yields daily returns with mean 0.0004 and standard
deviation 0.01265. In Figure 1 the histogram for daily returns is shown, in Figure 2 on

page 19 an intra-day path simulation is displayed.

0.035

T
"dppdf.dat"

0.03 |- L +

0.025 |- + +

0.015 - T .

0.01 |- N

0.005 | + +

+

Figure 1: Probability function for the distribution of daily returns in the Poisson difference

model with ¢ = 0, a3 = 0.001, ay = 0.001, Ay = 20050, A2 = 19950.
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0.02

T
"dpsim.dat"

0.015 |- -

0.005 | e — —— — - - 4

-0.005 I I I I I I I
0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004

Figure 2: A path simulation for one day in the Poisson difference model with pu = 0,
a1 = 0.001, ae = 0.001, A\ = 20050, Ay = 19950.

4.3.1 The Esscher transform for exponential processes

The Esscher transform for exponential processes exists always, and the parameter satisfies
(04 1)+ A (e 1) 4 X720 1) = ph + Ay (6219 — 1) + Ay(e722¢ — 1). (4.58)

If 4 = 0, which we will assume from now on, this equation can be solved elementarily and

we obtain . A(1 — =o2)
0f = g S—— 4,
o tas { Aier —1) } 459)
Under P* we have X ~ DP(M, AL, ay, ap) where
A1 — e02)] mraz Ao(1 — e~02)] “mitaz
M= | E—2 M=) |2— : 4.60
1 1 |: )\2<€a1 _ 1) :| ) 2 2 |: )\1(6(11 _ 1) ( )
The entropy is
Ip(P*, P) = (0*'(0%) — x(60*))T. (4.61)

4.3.2 The Esscher transform for linear processes

The exponential transform of X is
X, = &N} — a,N2, (4.62)

where
ap =e* —1, Gy =1—e"*. (4.63)

Thus X ~ DP(\, Ay, d1, @), and the cumulant function is

F(2) = M (€™ — 1) + Ag(e™®* — 1). (4.64)
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The solution to &'(6) = 0 is

1 )\2(1 — G_OQ)

0" = 1 : 4.65
€M — g2 & [ Ar(ecr — 1) } ( )

Under P* we have X ~ DP(X\;, N5, aq, ap) where

i G Aa(l — emo2)] " @i
A=A M= | . 4.66
L { A(er = 1) ] 7 P [ Ai(er — 1) (4.66)
The entropy is

Ir(P*, P) = —&(8")T. (4.67)

A  Proofs

A.1 Proof of Theorem 5

With y satisfying (2.50) we can define N according to (2.51). The process N is a Lévy
process and a martingale with Ny = 0. In this case it is known that & (N ) is a proper
martingale, and E[£(N)7] = 1, so (2.52) indeed defines a probability measure P?.

To see that (X;)o<i<7 is a Lévy process with triplet (bf, cf, UT), let us define N as the
logarithmic transform of N. We know, that N is also a Lévy process. This can be used
in an easy calculation to show that the characteristic functions of the finite dimensional
distributions have the required structure. [l

Remark 7. Similar theorems on the change of measure for Lévy processes have been
proved and are available in many textbooks and articles, for example [Sat99, Theorem 33.1,
p.218], [EJ97], [ES05]. They differ slightly with respect to our statement. For example
some start with P' < P given, while we want to construct Pt from given Girsanov
parameters (1,y). Some other use the canonical setting to achieve a measure PT < P,
such that (Xi)i>0 is a Lévy process, etc. Therefore we provided a sketch of the proof for
our formulation.

A.2 Proof of Theorem 7
In this proof we use the truncation functions
ha(x) = xl{lx\ﬁa} (Al)

for a > 0 and denote the first characteristic with respect to h, by b,. So we have for the
cumulant function

2

K(2) = boz + c% + / (€% — 1 — ha(2)2)U(dx). (A.2)

Using a structure preserving change of measure P +— P’ with deterministic Girsanov
parameters (¢, y) the new triplet (b, ¢, U’) with respect to h, is given by

%:m+w+/mw@m—nwmx (A.3)
d=c, (A.4)
U'(dx) = y(z)U(dx). (A.5)
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The new cumulant function is
2

K(z)=bz+¢ 5

+ /(e” — 1= he(x)2)U'(dx). (A.6)

The martingale condition is (1) = 0, which means

bo+ (w + %) + / ((e" — V() — ha(z)) U(dz) = 0. (A7)
The entropy is
/ 1 2
I(P', P) = gcyp +/(y(ﬂf) In(y(z)) —y(x) +1) U(dx). (A.8)
Remark 8. We have for y > 0 the inequality
V-1’ <yhy—y+1, (A.9)

and thus, if a function y(x) satisfies

/(y(x) Iny(x) —y(z) + 1)U(dx) < oo, (A.10)

then this implies the integrability condition (2.50) for in the corresponding structure pre-
serving change of measure.

Now we follow [CS02, p.18f] and consider six cases.
Case I. Suppose there exists a > 0 such that U((—o0,a)) > 0 and U((a,+o0)) > 0,
i.e., there are positive and negative jumps. Then we choose

« r < —a
p=0, g ={1 2l < a (A11)
Be2® x> a,

where « and (3 are finite, positive constants, determined as follows: If

ba+c/2+/ (e"—=1—2x)U(dx) <0 (A.12)

{lz[<a}

bo +¢/2+ f{mga}(ex —1—2)U(dx) + f{K_a}(eI — 1)U (dx)
coh g Jooom (@ — D > U(d) A1)

otherwise
ba + 6/2 + f{|$|Sa}(em —1- :E)U(dﬂ?) + f{z>a}(ez — 1)6_2$U(dﬂf)
f{m<_a}(e$ — 1)U (dx) ’

o =

The entropy is
I(P’,P):/ (alna —a+1)U(dz)
{z<—a}

+ / (Be™**(In B — 2z) — Be > + 1) U(dz), (A.15)
{z>a}
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which is, in view of the integrability properties of U(dx), clearly finite.
Case II. Suppose v((—00,0)) = 0 and [,_,_, 2U(dx) = oo. Then we can find a > 0
such that v((a,+00)) > 0 and -

be + < +/ (e — 1 — 2)U(dx) < 0. (A.16)
2 {0<z<a}
We use
1 r<a
w - 07 y(.fl?) - { ﬁeme x> a, <A17)
where (3 is a finite, positive constants, determined as
by + 5 + e’ —1—2z)U(dx
g b it Sz (€~ Lo () s
f{wa}(egC — 1)e=22U(dx)
Obviously the entropy is finite.
Case I11. Suppose U((—o0,0)) =0, f0<z§1 zU(dzx) < 0o, and ¢ > 0. We take
1 1 T T —2z
= 57 by + (e =1 —a)U(dx) + (e* —1)e =*U(dx) (A.19)
{0<z<1} {z>1}
and
1 r <1
y(l’) - { 6—23: T > 1’ (AQO)

The entropy is finite.
Case IV. Suppose U((—00,0)) = 0, U((0,+00)) > 0, [,_,,2U(dz) < oo, ¢ = 0,
by < 0. We can find a > 0, such that U((a,+o0)) > 0 and -

ba + / (e* =1 —x)U(dx) < 0. (A.21)

{0<z<1}

We proceed as in case II.

Case V. This case corresponds to a subordinator and is of no concern to us.

Case VI. This case covers Brownian motion, and the entropy is clearly finite.

Let us now consider the cases, where the Lévy measure is concentrated on the negative
real line.

Case II'. Suppose v((0,+00)) =0 and [ |_ _ aU(dz) = —occ0. As

by = b1 — / zU(dx) (A.22)
{-1<z<—a}

we can find a > 0 such that

bo+ = + / (e" — 1 — 2)U(dz) > 0. (A.23)
2 {—a<z<0}
We use
a < —a

v=0. o ={] 15, (A20)



where « is a finite, positive constants, determined as

_ba +5+ f{—a§m<0}(ex —1—2)U(dx)
f{Kﬂw}(eI — 1)U (dx)

o =

(A.25)

Obviously the entropy is finite.
Case IIT". Suppose U((0,400)) =0, [, _,2U(dr) > —o0, and ¢ > 0. We take

1&:—%—%[171—}— / (e* —1—2)U(dx) + / (e — 1)U(dx)

{—1<z<0} {z<—1}

(A.26)

and

y(x) = 1. (A.27)

The entropy is finite.
Case IV’. Suppose U((0,400)) = 0, U((=00,0)) >0, [, . _ 2U(dz) > —o0, ¢ =0,
bo > 0. We can find a > 0, such that U((—o00,a)) >0 and

ba + / (e —1—2)U(dx) > 0. (A.28)
{-1<z<0}

We proceed as in case II'.
Case V. This case corresponds to the negative of a subordinator and is of no concern
to us. 0]

A.3 Proof of Theorem 8

To prove Theorem 8 we first show two lemmas.

Lemma 1. Suppose X 1is neither decreasing nor increasing. Then

inf 7/() < 0. (A.29)

0<0

Proof: Suppose that X has no negative jumps, no Brownian component, and finite
variation. Then

7 (9) =b+ /+Oo(eﬁ<€””—1>(ez — 1) — h(e® = 1))U(dz). (A.30)

We can apply the Monotone Convergence Theorem. If X has negative jumps then there
is a number € > 0, such that

/ (6" = DU (dw) < 0. (A.31)

o0

If X has a Brownian component, then X has the same, and its second characteristic
satisfies ¢ > 0. Suppose ¥ < —e and let us use from now on in this proof the truncation
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function h(x) = zI|z| < 1. We have

—€

B (9) = b+ + / (e”" D —1)(e® — 1)U (dx)

In2 400
+ / (e’ =D — 1) (e® — ))U (dx) + / 2D (ef — U (dx) (A.32)
—€ In2
_ . —€ +oo .
<b+éd+ (Y — 1)/ (e* = 1)U(dx) + / e~ =D (e® — DU (dx).
—0o0 In2

(A.33)

This follows from elementary inequalities for the first and third integrand in (A.32), and
the observation that the second integrand is negative. Recalling ¢ > 0 we obtain the
desired limit. Suppose now that X has no negative jumps, no Brownian component, but
infinite variation. Then

/OIHQ(ex — 1)U(dzx) = 0. (A.34)

~ In2 . +oo §
K(9)=5b —i—/ (2 =D — 1) (e® — 1)U (dx) —i—/ (et — DU (dx).  (A.35)
0 In2
Applying Fatou’s Lemma to the first integral, and the Monotone Convergence Theorem
to the second we obtain the desired conclusion for § — —oo. U

Lemma 2. Suppose X is neither increasing nor decreasing and the jumps of X are
bounded from above. Then 8 = 400 and

sup ' (6) > 0. (A.36)

0>0

Proof: Suppose the Lévy process X is neither increasing nor decreasing, and its jumps
are bounded from above. Then the jumps of X are bounded from above and below and
X has moments of all orders. Thus we can work with the truncation function h(z) = x.

Under the given assumptions £ [\Xl\eexl] < oo for all 8 € R. Suppose the jumps of X are
bounded by r > 1. We have

~ 2 ~ ~
&(0) = bo + 5% + /( )(e‘% —1—20)U(dz) + /( ](eefﬂ —1—20)U(dx) (A.37)
-1,0 0,r

and

7 (0) :E+59+/

(e — 1)2U(dx) + / (P — 1)2U(dx) (A.38)
(=1,0)

(0,]
Case (i): Suppose there is a diffusion component or there are positive jumps. Then
glim o +/ (e — 1)2U(dx) = 400 (A.39)
— 00
(O]

while f(o T](eaz — 1)U (dx) remains bounded as § — +oo. So &'(#) — +o0 as  — +oc.

Case (ii): Suppose there is no diffusion component and there are no positive jumps.
Then

7)) =b+ /(_1 0)(69:” — DaU(dz) (A.40)
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and
lim #(0) =b —/ zU(dx). (A.41)
0—+o00 (71’0)
As we are working with h(x) = x the expression on the right hand side is the linear drift of
X. Since we assumed that X, thus X is not decreasing, this quantity has to be positive.
([l

To complete the proof of Theorem 8 we need the following proposition.

Proposition 4. Suppose the minimum entropy martingale measure for the exponential
Lévy process eX ewists. Then it is the Esscher martingale transform for the linear Lévy
process X .

Proof: Suppose X is neither increasing nor decreasing and its jumps are bounded
from above From Lemma 2 we see, that the Esscher martingale measure P* for the linear
process X exists. By [ES05, Theorem B] we conclude the minimal entropy measure exists
and coincides with P*.

It remains to treat the case, when the jumps of X are not bounded from above. For
ease of notation and without loss of generality we assume 7" = 1. Suppose the minimum
entropy measure exits. By [ES05, Theorem B] it is obtained via a structure preserving
change of measure with deterministic and time-independent Girsanov parameters (¢, yo)
with respect to X. They satisfy the martingale constraint

b+ 0(1/10 + %) + /((ez — Dyo(z) — h(z))U(dz) =0 (A.42)
and the minimal entropy is
Lo
10) = 5o+ [ () gole) — ofe) + 1) U(do) (A1)

Suppose A is an arbitrary compact subset of R\ {0}. Since yo(z) > 0 U-a.e. and ylny —
y+ 1<y for y > e* we can find r; > (max A), and r, > r; such that

0< /B(ex — Dyo(x)U(dz) < o0, (A.44)

where B = [rq,79]. Let

o= / (€ — Vyo(@)U(dz), B = / (¢ — D)yo()U(dx), (A45)
A B

and set 5
ys(z) = (1 +614(z) — ?O‘JB(Q;)) yo(2). (A.46)
The pair (g, ys) is for
5

the Girsanov pair corresponding to changing to an equivalent martingale measure. The
entropy

1(6) = / (95(2) Inys () — ys() + 1) U(de) (A48)
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must have a minimum at 6 = 0. By splitting the integral into contributions from A, B,
and R\ (AU B) we can justify by elementary arguments differentiation under the integral
sign. We have I'(0) = 0, with

I'0) = /lnyo(x) (IA(x) — %IB(:C)> yo(2)U(dx). (A.49)

In a similar way we can check I”(0) > 0. We can rewrite (A.49) as

/Ayo(m) Inyo(z)U(dzx) = %/Byo(x)lnyo(x)U(dm). (A.50)
Let )
0 = B/Byo(a:)lnyo(:v)U(dx). (A.51)

Then (A.50) can we rewritten as

/A(ln yo(z) — 0(e® — 1))yo(z)U(dz) = 0. (A.52)

Now 6 depends on B, and thus to some extent on A. But we can use the same B, thus
the same 0 for any compact subset A C A. This implies

Inyy(z) = 0(e® — 1) (A.53)

U-a.e. on A. By considering an increasing sequence of compact sets approaching R\ {0}
we see that (A.53) holds U-a.e. That shows, that y, corresponds to the Esscher martingale
transform for the linear Lévy process X. U

A.4 Proof of Theorem 9

We know from the assumptions, that #'(d) < 0. This implies E[|X:]e?*'] < oo. Thus
E[|X,]] < oo, or equivalently, Joon 2U(dz) < co. We also have E[e?X1] < co. Let us use
h(z) = xl;<1 as truncation function. We consider changes of measure with Girsanov
parameters with respect to X given by

- e <1
=40, y(r) =< e 1<z <n (A.54)
1 T >n,

with 6,, to be defined by the martingale condition as follows: The function

£(6) :l~7+6(0—|—1/2)+/ (weex—h(z:))(?(da:)+/l< < xeexf](dx)jL/ 2U(dz) (A.55)

<l r>n

is increasing in #. We have f(6) < 0 and f(6) — +oo as § — o0, at least for sufficiently
large n. If we define 6,, to be a solution to f(@n) = 0, then 6, is decreasing to § as n — oo.
Let P™ denote the corresponding measure.

We have seen above [ _, zU(dz) < oo, thus /.
f(6,) = 0 we conclude

-, 2U(dz) vanishes as n — oo. From

lim zePU(dr) = — |b+ &0 +1/2) + / (ze? — h(z))U(dz)| . (A.56)

n=0 J1<z<n x<1
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Since 6, > 6 the integrand in the following integral is nonnegative, and by the Fatou
Lemma

lim [ (% — %) Iy cpeny (2)U (dz) = 0, (A.57)
and thus
lim 7 (dar) = / 17 (). (A.58)
n—=o0 Jl<p<n

Without loss of generality let us assume 7' = 1. Then the entropy is

I(P",P) = %c9‘2 +/

<1

(e (02— 1) + 1)U (dz) + / (e (0,2 —1) +1)U(dz). (A.59)

1<z<n

/ (e (O — 1) + 1)U (dz) (A.60)
1<z<n
= / Ul(dx) +/ e U (dx) + 6, / zU(dz) — / e (dz).
1<z<n l<osn 1<x<n 1<z<n

Letting n — oo we obtain from the previous arguments

lim I(P", P) = —&(f). (A.61)

n—oo

So we have proved that the value %(0)T is approached by the entropy of a sequence of
equivalent martingale measures. Let us now show that this value is actually a lower bound
for the relative entropy. We follow the proof of Theorem 3.1 in[FMO03, p.520]: Suppose
(Q < P is a probability measure, such that (X’ Jo<t<r is a local martingale under ). Let
7, be a localizing sequence of stopping times, taking values in [0,7] and tending Q-a.s.

toT'. For m > 1 let

s<t
and B ) .
xr =X -Xr (A.63)

Then X™ and X™ are two independent Lévy processes with cumulant functions
REm(z) = / (e** — l)U(dI) (A.64)
(1,m]
and

Fm(2) = £(2) — Fm(2). (A.65)

We consider an arbitrary sequence ¢, increasing to 0, such that 6,, < @ for all m > 1. We
can find my > 1 such that U((1,m]) > 0 for all m > mg. Let us define now for m > mq
the measures R™ by

dR™ N
_dP = € T’ (A66)
where ) )
N =0, X + €n X" — R (0m)t — B (O + €)1t (A.67)
and €, > 0 is chosen to satisfy )
ER"[X7] = 0. (A.68)
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Clearly €, decreases as m — oo. We observe

dR,,

1_
P

= N™. (A.69)

Forn "
| dR,,
n [
dP |
The first and the second inequalities follow from well-known properties of the entropy,

see [FM03, Lemma 2.1 (2-3), p.3v14f]. Now X stopped at 7, is a martingale under @Q and
thus E9[X, ] = 0. The process X™ is nonnegative, and so

We have

I (Q|P) > Ir, (Q|P) > E“ = E°[N"]. (A.70)

ECIN| > —(Fn(0n) + (O + €1)) E[). (A.71)

We have E9[r,] — T by dominated convergence. Finally,

Fm(0m) + Fm (O + €m) = £(0m) — Fm(0m) + Fm (O + €m) (A.72)
and
o (O + ) — Fon () = / (em® — 1)ePa (7 (d). (A.73)

The integrand is nonnegative, and another application of Fatou’s Lemma shows that this

integral vanishes as m — oo. As k(6,,) — &(0) for m — oo we conclude
1(Q, P) > —&(0)T (A.74)

and we are done. O
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