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Volatility Determination
in an Ambit Process Setting

Ole E. Barndorff-Nielsen* and Svend Erik Graversen'

Abstract

The probability limit behaviour of normalised quadratic variation is studied
for a simple tempo-spatial ambit process, with particular regard to the ques-
tion of volatility memorylessness.

1 Introduction

Dynamic stochastic phenomena frequently involve a significant element of random-
ness beyond the most basic types of stochastic innovations. Additional variations
of this kind are often referred to as volatility or intermittency, and they are of key
importance particularly in finance and turbulence.

In many cases the volatility is expressed in stochastic modelling by a multi-
plicative term specified as a stationary positive process o. Thus, for example, one
considers stochastic processes

Y, = /A g(t—s)o,dWj (1)

where A is a t-dependent interval of R, ¢ is a deterministic function and W is
Brownian motion. The question of what can be learned about ¢ from observations
of the process is then often of central interest and the main tool to study that is
(realised) multipower variations, in particular (realised) quadratic variation, see [8],
9], 5], [6], [7], [3], [11], [1], [2], and references given there.

There are two main types of (1). In case g is constant and A, = [0,t] we are
in the framework of Brownian semimartingales while if ¢ is nontrivial and A, is of
the form [a,t] for some a € [—o00,0] we have a Brownian semistationary process
(note that if @ = —oo then Y is a strictly stationary process on R). These two
types are substantially different. In particular, Brownian semistationary processes
are generally not semimartingales, and this, in particular, implies major differences
between the theory of multipower variations for the two types, see [2]. To exemplify,

*Postal address: T.N. Thiele Centre, Department of Mathematical Sciences, Aarhus University,
Ny Munkegade 118, Building 1530, DK-8000 Aarhus C

TPostal address: Department of Mathematical Sciences, Aarhus University, Ny Munkegade 118,
Building 1530, DK-8000 Aarhus C



in the Brownian semimartingale case the realised quadratic variation over [0, t] will
converge in probability to ", where for a < b

[0,¢]
b
24 _ 2 7.
U(ayb]_/a o.ds;

on the other hand, for Brownian semistationary processes, where a normalisation of
the realised quadratic variation is generally required, it may, for instance, happen
that the convergence is to /\U[QOJ;] (1-— /\)U(Qj'l ;1) for some constant A € (0,1) (cf.

[7], [2]). When the limit is in fact 0[2031 we speak of a volatility memoryless process.
The Brownian semistationary processes constitute the null-spatial family of Brow-

nian based ambit processes. The general form (except for a drift term that will not

concern us here) is based on an ambit field Y, i.e. a stochastic field in space-time

Y (2,) = / IGS9O (A 2)

where A; (x) is some subset of X' X (—o0, t] for some spatial region X and where g is
deterministic, o is a positive stochastic field and W is two-dimensional white noise.
Then an ambit process X is a process of the form X = Y (7) where 7 denotes a
smooth curve in X x R.

Figure 1: Ambit framework

The purpose of the present note is to explore the question of volatility mem-
orylessness for a simple tempo-spatial setting and to draw some conclusions with
respect to further related research questions.

Section 2 presents our main conclusions, while the proofs are given in Section 4.
Section 3 summarises and provides a brief outlook.



2 Results and Examples

We restrict the discussion to the case X = R and ambit fields of the form
Y@J)Z%&)gw—éi—$0A®WW&ﬁﬂ 3)

where A; (z) = A+ (2,1), (05(£))(e.s)er2 is a real valued continuous random field
independent of 7 and ¢ a Lebesgue square integrable function on R?. Here we are
mainly interessted in the case where

A={(§s) eR*| =M <5 <0, c1(s) <& < eofs)}

for some M € R, and smooth functions ¢; : [-M,0] — R_ and ¢y : [-M,0] — R,
such that ¢;(0) = ¢2(0) and ¢ is increasing and ¢, is decreasing. Note that A is a
closed set.

For a given smooth curve 7 = (11, 7) : R — R? consider the process

X, =Y(r(0)) 6> 0.

The realised quadratic variation of X and its normalised version are, for 6 > 0
and t > 0, given by

/9] s
(Xl = (Xis — Xp1ps)® and  [Xy], = o) [ Xl

where ¢(9) is a positive constant depending only on ¢, whose specific form will be

defined below. We are interested in the asymptotic behavior of [X;], for 6 — 0.
Up to now we can only satisfactorily handle the case of 7 being a straight line or
more generally a piecewise straight line. Therefore for ease of notation we will from
now on assume that 6 — 7(0) is a straight line and thus A7(d) = AT where with
obvious notation

AT(0) = (AT1(6), A1e(9)) = (1 (t + ) — 11(t), To(t +0) — 1o(t)) for ¢,d > 0.

We now introduce a probability measure 75 which is determined by the kernel
function g and whose behaviour as § — 0 is of key importance for the probabilistic
limit properties of [Xj].

Put

Vs(u,v) = (ga(AT(8) 4+ u, ATo(8) +v) — ga(u,v) )?

((g(AT1(5) +u, ATo(8) + ) — g(u,v) )?
for (u,v) € (—A)N(—A — A7(9))

=< ¢*(u,v) for (u,v) € (=A) \ (=A — A7(9))

(A1) + u, ATo(6) + )
for (u,v) € (A — A1(0)) \ (—A4).




Observe that 1s(u,v) =0 if (u,v) ¢ (—A) U (—A — A7(5)). Now define
75 (dudv) = ¥s(u,v)/c(0) Aa(dudv) § >0

where )\ denotes Lebesgue measure on R? and

c(0) = s (u, v) Ay (du dv).
R2
Then, by construction, 7 is a probability measure and clearly all weak limit points of
ms for & — 0 will be probability measures concentrated on —A. Simple calculations
together with the continuity assumption on o imply that in case the limit 75 —5_.o
o exists then

B[V, | 0] =0 /R 2 /0 02 oo (71(5) — u) ds mo(du dv).

We are particularly interested in conditions on A and g ensuring that the limit
mo exists and is concentrated on J(—A) = —0A. Because in this case we have
furthermore that

(131_r>r(1) Var([Xs], | o) = 0.

(This result is established as Lemma 2 in Section 4). Consequently, under these
conditions, we will have the central result that, as 6 — 0,

vs], X /112 /0 072_2(8)+U(T1(S)—|—U) ds m(dudv). (4)

Here 7 denotes the image measure of 7y under the transformation (u, v) — (—u, —v).
Observe that 7 is concentrated on 0A.

We can now state the key result of this paper. For proofs and further details see
Section 4.

Theorem 1. Suppose that T is a straight line and A is a nonempty bounded closed
convex set such that A = A°. Then there exists a probability measure m concentrated
on the boundary 0A of A such that formula (4) holds provided the following condition
18 satisfied for some —% <a< %

(ia) g = whs where ¢ is Lipschitz continuous and not identically vanishing on
—0A, and

ha(—a) = {d(x,aA)a zeA -

0 r¢ A
where d(x,0A) denotes the Euclidean distance between x and OA.

Remark. Note especially that 7 may be situated on 0A even if the function g tends
rather rapidly to 0 as its argument tends to the boundary. O]

From this Theorem it is evident that by suitable choice of g one can arrange that
the measure 7 is concentrated on a specified part of the boundary. In particular, if
the set A has a unique top point then 7 may be the delta measure at that point, in
which case there is volatility memorylessness.
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3 Conclusion and outlook

We have discussed the probabilistic limit behaviour of (normalised) realised quad-
ratic variation for a class of ambit processes, where the underlying ambit field is
homogeneous provided the volatility /intermittency field o is stationary, and where
the mother ambit set A is a bounded, closed and convex set. In this setting a
considerable variety of limits are possible, depending on the nature of the damping
function g. All the limits are integrals of the squared volatility /intermittency field
over the set A and with respect to a probability measure m on A. Under specified
weak conditions the integrals are concentrated on the boundary of A. Volatility
memorylessness is then ensured if A has a single top point.

There is a range of further questions of theoretical and applied interest in this
context:

(o) What happens if A is not bounded, stretching to minus infinity in time, or
if A is not convex. (Figure 2 shows a type of ambit sets that are of interest

in turbulence studies and whose shape is motivated in Taylor’s frozen field
hypothesis (cf. [4]).)

(i) What is the situation in case the curve 7 is not linear. (The linearity assump-
tion is crucial in deriving formula (6).)

(ii) How is the probabilistic limit behaviour of multipower variations generally.

(iii) What type of central limit theorems can be established for the multipower
variations. (Undoubtedly, as was the case for Brownian semimartingales see
[2], Malliavin calculus will be a key tool.)

(iv) How may such central limit theorems be used to draw inference not only on o
but also on g (cf. [2]).

t'+

I
r T !

Figure 2: Ambit regions



4 Proofs

Maintaining the notation of Section 2, we write g4 for g - 1_4, for any Lebesgue
square integrable function g on R?. Since A is bounded it is enough to assume that
g is locally square integrable. Inserting this gives

[t/4]

6= 3 (] o (h9) = (6.5~ a(r(( = 1)6) — (€. (€ Wide )

k=1

implying, by means of the independence between o and W, that for all §,¢ > 0

Writing A7 (k6) for 7(kd) — 7((k — 1)d) and using the linear substitution
(u,v) = 7((k —1)0) = (&, 5) = (n((k — 1)d) — & m2((k — 1)) — )
E[[Xs]; | o] may be written as
[t/d]
S [ Laalr(h8) + (0:0) = ga(.0) P ol = 108) = ) N o)

Thus if A7(kd) = A7(9), that is independent of k, in particular if 6 — 7(6) is a
straight line, we have

[t/9)
E[Ysli | o] = - Us(u,0) D 0 e-njgy—o (M ((k = 1)8) = u) Ao(dudv) — (6)

where for 6 > 0

Vs(u,v) = (ga(AT(0) +u, Aa(8) +v) — galu,v))?
(((g(AT1(6) +u, ATa(8) +v) — g(u,v) )?
for (u,v) € (—A)N(—=A — A7(9))
=< ¢*(u,v) for (u,v) € (—A)\ (-4 — A1(0))

G (ATL(0) + u, ATa(5) +v)
for (u,v) € (A —AT(0)) \ (—A).

\

Observe that ¥s(u,v) =0 if (u,v) ¢ (—A) U (—A — A7()). Formula (6) suggests
that it is natural to put

c(0) = Ws(u, v) Ag(du dv)
R2



since then

[t/5]

E[[Xs],] 0] = / 520 (h-1)0)—o(T1((k = 1)8) — w) m5(du dv)

where 15 denotes the probability measure
75 (dudv) = ¥s(u,v)/c(6) Aa(dudv) § > 0.

Assume from now on that 6 — 7(6) is a straight line and thus A7(§) = JAT. As
already observed

Ve>0 36, >0: m;(R*\ A) =0 forall0<d <,
where, using the notation d((¢,s), B) := inf(, ) ep |(&, s) — (u,v)| for any B C R?,
Ac=A{(&,5) e R?[d((&,5), —A) < e}

Thus all weak limit points of 75 for 6 — 0 will be probability measures concen-
trated on —A. Using the continuity assumption on o we see that in case the limit
Ts ——5_,0 To exists then

BT ol oo [ [ 7t o(a(s) = ds mofdud)

We are interested in conditions on A and g ensuring that the limit 7y exists and
is concentrated on 9(—A) = —0A, implying of course that 7 is concentrated on 0A.
Before discussing specific conditions for this to happen we establish the following
Lemma.

Lemma 2. Under the assumption that o exists and is concentrated on —0A we
have that
lim Var([X;], | o) = 0. (7)
6—0
Proof. For given §,t > 0, Var([X;],| o) equals 6%/¢(6)* times

[¢/0]
ZVar((Xkd—X(k_1)5)2|o)+2 Z Cov((Xps—Xk-1))% (Xis— Xa-15)%) | o).

k=1 1<k<I<[t/d]
Applying that for any centered jointly Gaussian vector (U, V')
Cov(U?,V?) =2Cov(U,V)* and Var(U?) = 2Var(U)?

we may write
V&r([Xg]t ’ O') =1Is+ 1l

where
952 [t/9] , ,
Is = Bl (Xps — Xpe
e ’; [(Xks — Xg—1)s)" | 0]



and
157 [t/s

]
s = 25 2 Bl (Xas = Xosrys) (Xas = Xaa) [
k=1
Simple manipulations show that for all o > 0
20 ™
Is < — max FE[(Xs — X(k_1)5)2 |o] E[[Xs], | o]

— c(9) 1<k<[t/s]
and for all 1 < k < [t/d]
E[(Xrs — X(k-1s)* | 0]
= /R2(9A(T(k5) — (u,0)) = ga(r((k = 1)8) = (u,v)) )*o2(u) Ao(du dv)
< a2 [ (aa(Ar(0) + (0) = galu.0) N do)

o (u7v)eA|AT|6

2
= max o,(u) c(9).
(wv)EA| AL s ( ) ( )

Thus this shows that lims_.oIs = 0. So it remains to verify that lims_,q I15 = 0.
Forall 1 <k <l<[t/d]

Bl (Xgs — Xk-1)6)(Xis — X-1)s) [ 0]
= [ (a(r(08) = (0.0) = galr(( = 15) = (w0))
(gal719) ~ (u,0)) — ga(r((1 = 1)9) — (1,0)) 02(0) Mo s )
= [ (0al87@)+ () = ga(u0))

(gal(l =k + 1)AT(S) + (u,v)) — ga((l = k)AT(S) + (u,v)) )
) 1A|AT|5(U7 v) 032((#1)6)—@(7'1((76 —1)d) — u) Aa(du dv).

Using the continuity of the o-process and Cauchy-Schwarz’s inequality this implies
the existence of a constant M such that

E[(Xks — X(e-1)5) (Xis — X(-1)s) | o °
<M | (9a(AT(6) + (u,v)) — ga((u,v))? Ao(dudv)

. /R (ga((l = k+ DATE) + (u,0)) — gal(l — K)AT() + (u,v)))
LA, (U, v) Ag(du dv)
— M e(6) / (4(AT(8) + (u,0)) — ga(u, v))?
R2
L ((w0) = (= k)AT(5)) Aa(du dv).

Thus lims_g IT5 = 0 if limg_,o I s = 0, where I s denotes the expression

S 2 a6+ )~ gatu )’

1<k<I<[t/d] c(9)
Lo, ((w,0) = (= k)AT(5)) Aa(du dv).



Given € > 0 there exists a 0, > 0 such that for 0 < § < 9,

Bix 3 = [ 0albr®) + (w.0) - galu0)?

1<k<I<[t/d] c(9)
L (1, 0) = (1= k) AT(8) Ao(du dv)
-y e /R () — (= ROAT) ma(dudv)

1<k<I<[t/6]
< Y 8 (et fa)(w) ~ (- WA To(dude)
1<k<i<]t/s) B
where fc1, fe2 € Cy(R?), are chosen such that 1,- < fei+ feo and
supp(fe1) C {(u,v) € —A|d((u,v), —0A) > €/2}
and
supp(fe2) C {(u,v) € R*|d((u,v), —0A) < 2¢}.
By weak convergence
_ t ot
limsup I15 < / / / (fer + fe2)(u,v) — (r — s)AT) drds mo(dudv)
640 R2J0 Js
and so, since 7 is concentrated on —JA, we find that

_ t ot
limsup 115 < / / / fea((u,v) = (r — s)AT1) dr ds mo(du dv)
R2J0 Js

50
t t
< sup / / fea((u,v) — (r — s)A1)drds
(u,0)e—0A JO Js

< sup A({r,9)]|0<s<r <t (u,v) — (r—s)AT € supp(fe2)})-
(u,v)e—0A

But for all (u,v) € —0A and all 0 < s <t
MAr|0<s<r <t (u,v) — (r—s)A1 € supp(fea)}) < cre
for some constant ¢, depending only on 7 and A. Thus

lim sup ﬁg < c,te
510

and since € was arbritrary this proves that I — 0 for & — 0. That is (7) holds. O

Finally we turn to the proof of Theorem 1. We will consider only the case a = 0.
The other cases can be treated in a similar yet slightly more complicated way. The
statement is a consequence of the two lemmas below.

Let in the following 7 be a given vector in R? and C a bounded closed convex
subset of R? satisfying

0eC and C=C".

In particular Ay 1 (0C) < oo where Ay is the 1-dimensional Hausdorff-measure in R?.
Put
T(x) =inf{t >0]|z €tC} z€R>

That is T is the gauge function of C' and so 7' is a convex function satisfying

9



i) T(\x) =AT(x) A>0,zeR%
i) Ary,m € (0,00): |z < T(z) <mlz| z€RA
i) C={r e R*|T(z) <1} and 9C = {x € R*|T(z) = 1}.

Thus T : R? — R is a non-negative a.e. smoothly regular 1-homogenous continuous
function and so, using formula (8.25) in [10], we have

o o(tx) 1 e
o d)s :/ t{/ —/\gl(dx)}dt :/ —{ to(tx) dt})\gl(dx)
/R? 0 ac |T"(z)| ac [T"(x)] Lo )
for every non-negative Borel function ¢ : R?> — R. The use of Tonelli’s Theorem
is legitimate since A\y1(0C') < oo. The properties of T" ensure that 7"(x) exists and

is non-zero for Ayi-almost all x € JdC. In the sequel we shall for x € 0C use the
notation

0 otherwise

n(z) = { T'(x)/|T'(z)] T'(z) exists and is non-zero .

Set, for 6 > 0,
vs =0 "fsd)y for fs5(x) = (1o(x + 1) — 1c(2))* = € RA

Observe that the vs’s are all finite measures and that the vs for 6 < 1 are all
concentrated on a fixed compact set.

Lemma 3.
w
Vs _‘_>6¢0 |7' . TL‘ 130 d)\gl.

Proof. By the above observation it is enough to prove that

lim (51/ hfsdhy = /ac h(x) |7 - n(z)| A21(dx)
R2

510

for all Lipschitz continuous h € C.(R?),. Given such an h, we have according to
(8),
1 1

/Rthy(;_(s—l g hf(;d)\g—/aom{5/Oooth(tx)fg(tx)dt})\gl(dx). 9)

Fix x € 0C with n(x) # 0 and consider the function ¢t — fs(tx), that is the indicator
function for the set
{t >0tz € (C—0m)AC}.

We may and will assume that 7'(67) < 1 as this is true for J sufficiently small. Since
tx € C if and only if t < 1 we have

(Lioo)N{t > 0] fs(tz) =1} = (1,00) N {t > 0| T(tz + d7) < 1}
and similarly

(0,1) N {t > 0] f5(tz) =1} = (0,1) N {t > 0| T'(tx + or) > 1}.

10



Since t +— T'(tz + d7) is convex, {t > 0|T(tz + d7) < 1} is an interval including 0.
Thus
(Loo) N{t > 0] fs(tx) =1} = (1,bs(z)] for some bs(x) > 1

and
0, 1)Nn{t > 0] fs(tx) = 1} = (as(z),1) for some 0 < as(z) < 1.

Suppose that 7-7"(xz) > 0. Since
T(x+07) =T(x) + 61 -T'(x) + 0(0%) = 1+ 67 - T'(x) + 0(6?)

we have that T'(z+07) > 1 and so T'(tz +07) > 1 for 0 small and ¢ sufficiently close
to 1. Thus bs(z) = 1. Furthermore, since

T(tx + 67) = T(tz) + 67 - T'(tz) + o(6?)
=tT(x) +to7 - T'(x) + o(6%)
=t(1+67-T'(z)) + o(6?)
we have
1
T 1tor T'(x)
Similarly, if 7-7"(z) < 0 we see that

as(z) +0(6%) =1—68|7-T'(z)| + +o(6?).
as(r) =1 and bs(x) =1+0|7-T'(x)| + +0(6%);
and if 7-7"(x) =0 we obtain
as(z) =1—0(6*) and bs(z) =1+ o(6?).
Inserting this in (9) we obtain by the Lipschitz continuity of h that

h(z)
c |T'(z)]

|7 - T'(z)] A2 1(dx) :/ h(z) |7 - n(z)| A21(dx).

lim 5! hfédAQZ/
R2 0 oC

510
O

Let now g : R? — R be a given Lipschitz continuous function. Set for § > 0

g5(z) = ((g1e)(x 4+ 67) — (91¢)(x))? = € R2

Simple arithmetic shows that

gs(x) = (6*f5)(x) + (g(x) — g(x + 7))
~1o(x +67) ( (9(x) 4+ gz + 7)) Lo(z + 1) ) —2(g1c)(x))

for all x € R2. The assumptions on ¢ and the above Lemma 3 therefore imply that

1 o1
1;&)15 R295d)\2:l§ﬂ)15 R292f5d>\2:/8092(:z:) |7 - n(z)| A1 (dx).

From this we may deduce the following result which proves Theorem 1.

11



Lemma 4. Let g : R? — R be Lipschitz continuous such that

/80 G (2) |7 - ()| Aar (d) > 0.

Then maintaining the above notation

fts —s510 977 1| Loc dAas

where, for each o > 0, us is the absolutely continuous Borel probability measure on
R? with density proportional to gs.
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