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Abstract

A nonstandard saddlepoint approximation to the distribution of a sum of
Markov dependent trials is introduced. The relative error of the approxima-
tion is studied, not only for the number of summands tending to infinity, but
also for the parameter approaching the boundary of its definition range. A
comparison is made with another recent study of Markov dependent trials.

Keywords: Markov dependent trials, relative error, saddlepoint approximation

1 Introduction

Motivated by recent studies we consider in this paper a saddlepoint approximation
to the Markov binomial distribution, that is, the distibution of Sn =

∑n
i=1Xi, where

X1, X2, . . . is a Markov chain on the state space {0, 1}. Let the transition probabil-
ities be parameterized by α = P (Xn+1 = 1|Xn = 0) and β = P (Xn+1 = 1|Xn = 1).
Broadly speaking approximations can be divided into the Gaussian type and the
compound Poisson type. In the first type the approximation becomes exact in the
limit of a Gaussian distribution only, whereas the second type handles cases with
α → 0, typically with α of order 1

n
. The possible limiting distributions when α

and β depend on n can be seen in Dobrushin (1961). The approximation of Xia
and Zhang (2009) is of the Gaussian type. The Markov binomial distribution is
approximated by either a binomial distribution or a negative binomial distribution
obtained by fitting the first two moments. This approximation is exact when α = β,
but otherwise becomes exact for a limiting Gaussian distribution only. Most impor-
tantly, though, Xia and Zhang (2009) provide an explicit upper bound on the total
variation distance of the approximation, which is of order 1/

√
n for fixed values of

α and β. In Čekanavičius and Vellaisamy (2010) approximations of the compound
Poisson type is considered. If α is of order 1

n
the error is of order 1

n
as well, and for

fixed values of α and β the error is of order 1√
n
. However, one should keep in mind

that the approximating measure in Čekanavičius and Vellaisamy (2010) is by itself
complicated to evaluate. The saddlepoint approximation we suggest in this paper is
of the Gaussian type and is thus mostly inspired by Xia and Zhang (2009). For fixed
values of α and β the relative error is of order o( 1

n
). Contrary to the above men-

tioned approximations the saddlepoint approximation has bounded relative error all
over the parameter space.
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The different approximations to the Markov binomial distribution have mostly
theoretical interest. The exact distribution can be calculated recursively. Define
p(k, a, n) = P (Sn = k,Xn = a). Then by splitting an event according to the value
of Xn we find

p(k, 0, n+ 1) = p(k, 0, n)(1− α) + p(k, 1, n)(1− β),

p(k, 1, n+ 1) = p(k − 1, 0, n)α + p(k − 1, 1, n)β,
(1)

with initial values p(0, 0, 1) = P (X1 = 0), p(1, 1, 1) = P (X1 = 1), p(0, 1, 1) =
p(1, 0, 1) = 0, and with p(k, a, n) = 0 for k > n. This simple recursion was stated
in Ladd (1975), and can be considered analogous to standard recursions within the
field of hidden Markov chains. The recursion is useful when all of the distribution
is wanted. For n of the order 104 the calculation is feasible. If only one point
probability is needed the sum formula of Gabriel (1959) can be used,

P (Sn = k) =
{
P (X0 = 0)

c0∑

m=1

(
n− k
bm/2c

)(
k − 1

dm/2e − 1

)(1− β
1− α

)bm/2c(α
β

)dm/2e

+ P (X0 = 1)

c1∑

m=1

(
k

bm/2c

)(
n− k − 1

dm/2e − 1

)(1− β
1− α

)dm/2e(α
β

)bm/2c}
βk(1− α)n−k,

where c0 = min{2s, 2(n− s) + 1} and c1 = min{2s+ 1, 2(n− s)}. For n of the order
106 the calculation using this formula is feasible. Thus, the different approximations
become of practical interest only for very large n.

In section 2 we introduce the saddlepoint approximation and study the relative
error of the approximation. In Section 3 we compare the approximation with that
of Xia and Zhang (2009) and study the upper bound given in that paper. The
appendix provides details of the saddlepoint approximation.

2 Saddlepoint approximation

When β is of order 1 − α and α is small the distribution of Sn has high point
probabilities at zero and n and is almost uniform in between. Most approximations
will fail for this case. To handle this, we calculate the probabilities P (Sn = 0)
and P (Sn = n) exactly and use the saddlepoint approximation for the conditional
distribution given that 0 < Sn < n. This is motivated by numerical investigations
which indicate that the density P (Sn = k), k = 1, . . . , n − 1, in between the two
extremes is log concave. In relation to the saddlepoint approximation there are
two extreme cases of a log concave density. One is the uniform distribution men-
tioned already above, and the other is a very peaked distribution. The latter case
is encountered as α → 1 and a slight modification of the traditional saddlepoint
approximation is needed to handle this case. For comparison with Xia and Zhang
(2009) we consider the stationary case with p0 = P (X1 = 0) = (1− β)/(1− β + α)
and p1 = P (X1 = 1) = α/(1 − β + α), but the investigations of this section can
easily be redone with other choices of p0 and p1.

Let qk = P (Sn = k|0 < Sn < n) be the conditional probabilities and let φ(z) =∑n−1
k=1 z

kqk be the moment generating function. In terms of the moment generating
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function ψ(z) of Sn we have

φ(z) =
ψ(z)− P (Sn = 0)− znP (Sn = n)

P (0 < Sn < n)
=
ψ(z)− p0(1− α)n−1 − znp1βn−1

1− p0(1− α)n−1 − p1βn−1
, (2)

and from the recursion (1) we find

ψ(z) =
n∑

k=0

zk[p(k, 0, n) + p(k, 1, n)] = (p0, zp1)P0(z)n−1(1, 1)T, (3)

P0(z) =

(
1− α αz
1− β βz

)
.

Define the exponentially tilted distribution as q(k, z) = qkz
k/φ(z), k = 1, . . . , n− 1.

For a fixed k = 2, . . . , n − 2 we choose z(k) such that the tilted distribution has
mean k and consider an approximation of the form

q(k) = φ(z(k))z−kq(k, z(k)) ≈ φ(z(k))z−kA(k),

where A(k) is an approximation to q(k, z(k)). In this way the approximation prob-
lem has been centered in that we seek an approximation to the point probability at
the mean of the distribution. The traditional saddlepoint approximation, including
O( 1

n
) terms, takes the form

A(k) =
1√

2πσ(k)2

{
1 + 1

8
γ4(k)− 5

24
γ3(k)2

}
, (4)

where σ(k)2 is the variance and γ3(k) and γ4(k) are the third and fourth standardized
cumulants of the exponentially tilted distribution. The saddlepoint approximation
was originally developed for situations with a limiting normal distribution, but in-
cluding the O( 1

n
) term makes the approximation widely applicable. For discrete

distributions the approximation will, however, fail in cases where the variance σ(k)2

is small, corresponding to a distribution almost concentrated in one point. We
therefore make the following alternative approximation

A(k) = 1− σ(k)2 if σ(k)2 < 0.4. (5)

The value 1−σ2 comes from the probability at the center of a symmetric three point
distribution with variance σ2. Details of the approximation are given in A.

Before embarking on a detailed discussion of the Markov binomial distribution
we illustrate how log concavity bounds the error of the saddlepoint approximation.
Consider a variable X with a log concave density symmetric around x = 0, and
consider the main term of the saddlepoint approximation 1/

√
2πσ2 if σ2 ≥ 0.4 and

1 − σ2 if σ2 < 0.4, where σ2 is the variance. For a fixed value p0 of P (X = 0)
the smallest variance is obtained with an almost uniform density (P (X = j) = p0
for |j| ≤ j∗, where j∗ is the largest integer less than or equal to (1 − p0)/(2p0),
and P (X = ±(j∗ + 1)) = (1 − p0 − 2p0j∗)/2), and the largest variance is obtained
with a discrete Laplace distribution (P (X = j) = θ|j|(1 − θ)/(1 + θ) with θ =
(1 − p))/(1 + p0)). We thus have bounds on the ratio of the approximation to the
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Figure 1: Ratio of saddlepoint approximation to the true probability at the center point
for a symmetric log concave density. The full drawn line is for the main term of the
saddlepoint approximation and an almost uniform density, and the dashed line is for a
discrete Laplace distribution. The dotted lines are for the same cases when using the
saddlepoint approximation in (4) and (5).

true probability. These bounds are shown in Figure 1 as the full drawn line and the
dashed line. Also included in the figure is the improved approximation (4).

We start the investigation of the Markov binomial distribution with the case of
fixed parameter values as n tends to infinity.

Proposition 1. For fixed values of α and β the saddlepoint approximation has
relative error of order o( 1

n
) in a large deviation region for k. In particular it follows

that the total variation distance is of order o( 1
n
). For n→∞ the relative error of the

saddlepoint approximation at the extremes of the distribution (k = 2 and k = n− 2)
is approximately 0.0089.

Proof. The relative error in a large deviation region comes from standard results
(see e.g. Jensen (1995), Chapter 9).

In order to consider the extreme case with k = 2 (and similarly with k = n− 2)
we consider the exponentially tilted distribution with moment generation function
φ( γ

n
z)/φ( γ

n
). Using an eigenvalue decomposition of P0(

γ
n
z), we find that the limit
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as n→∞ is a Poisson distribution with mean 2γα(1− β)/(1− α)2, conditioned on
being greater than zero. The saddlepoint approximation to the Poisson distribution
can be calculated numerically. This gives the stated relative error for the extreme
cases.

The result of Proposition 1 that the total variation distance of the approximation
is o( 1

n
) may be compared to the order O( 1√

n
) of the approximation of Xia and

Zhang (2009). A small relative error in a large deviation region is, however, a
stronger statement, allowing us to approximate tail probabilities that are much
smaller than o( 1

n
). The proposition also shows that in the very extreme tail of the

distribution the approximation gives the correct order of the probability.

We next turn to a discussing of the relative error of the approximation when
(α, β) approaches the boundary of the parameter space. We state the results in terms
of zkP (Sn = k) for suitable z, in which case the exponentially tilted distribution
zkP (Sn = k)/[P (0 < Sn < n)φ(z)] is obtained by a normalization. We first consider
the case with α → 0 where P (Sn = 0) → 1, and the conditioning on 0 < Sn < n
becomes important.

Proposition 2. For α→ 0 with α/β → 0 we have that

β(1− β + α)

α(1− β)βk
P (Sn = k) ∼ 2 + (1− β)(n− 1− k), k = 1, . . . , n− 1. (6)

The saddlepoint approximation to the distribution on the right hand side has maximal
relative error between 0.17 and 0.18 for n ≥ 7.

Proof. The event {Sn = k} is the union of cases where xj = 1 for k consequtive
times and cases where these are not consequtive. In the former case the probability
is of order α(1− β)βk−1/(1− β + α), and in the latter case the probability is of the
same order multiplied by α/β. Thus, in the limit α → 0 with α/β → 0, we need
only consider the consequtive cases. This gives (6).

The density in (6) is clearly log concave and the most extreme case, when using
the saddlepoint approximation, is the uniform distribution obtained for β → 1. For
a uniform discrete distribution on the numbers {1, 2, . . . ,m} the cumulant transform
is given by κ(s) = log(1−esm)+log(ω/m) with ω = es/(1−es). For k = 2, . . . ,m−1
let s be the saddlepoint determined by κ′(s) = k. For symmetry reasons we need
only consider k ≤ m

2
, which is covered by −1

2
≤ s ≤ 0. We first consider the tail

of the distribution with m4esm → 0 as m → ∞. Then the relative error of the
saddlepoint approximation tends to

ωe−s[1+ω]√
2πω2/es

{
1 +

ω + 6ω2 + 6ω3

8ω2/es
− 5[ω + 2ω2]2√

esω3/2

}
− 1,

as m → ∞. This is in the limiting situation of a geometric distribution, and the
largest absolute relative error is less than 0.013 for k = 2 corresponding to s =
− log(2). Next, for the center of the distribution let s = a

m+1
with−5 log(m) ≤ a ≤ 0
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and let now ω = ea/(1− ea). The limiting relative error as m→∞ is

eae1+aω/[(−a)ω]√
2π(1/a2 − ω − ω2)

×
{

1 +
6
a4
− ω−7ω2 − 12ω3 − 6ω4

8(1/a2 − ω − ω2)2
−

5[ 2
(−a)3 − ω − 3ω2 − 2ω3]2

24(1/a2 − ω − ω2)3/2

}
− 1.

The largest relative error is less than 0.18 and is obtained for a = 0 corresponding
to the center value k = (m+ 1)/2. Numerical investigations show that the maximal
relative error is between 0.17 and 0.18 for m down to 6 (see in this connection also
Figure 1).

By an interchange of the two states Proposition 1 also covers the case β → 1
with (1 − β)/(1 − α) → 0. Similarly, the case where α and β tend to zero at the
same rate is covered by the next proposition, where we turn to limiting cases with
α→ 1.

Proposition 3. For α→ 1 with (1− α)β/(1− β)→ 0 we get

β(2− β)
( β

1− β
)n(1− β

β2

)k
P (Sn = k)

∼





(
k−1
n−k
)

+ 2β
(

k−1
n−k−1

)
+ β2

(
k−1

n−k−2
)
, k ≥ n−1

2
,

o(1), k < n−1
2
,

(7)

and
2− β

(1− β)(1− α)n−1

((1− α)2

1− β
)k
P (Sn = k) ∼

{
o(1), k > n−1

2
,(

n−k−1
k

)
, k ≤ n−1

2
.

(8)

In both of the above cases the nonvanishing part of the density is log concave.
Finally, for α → 1 and (1− β)/(1− α)→ ξ, where 0 < ξ <∞, we can express

P (Sn = k)(1 − α)k/[(1 − α)n(1 +
√
ξ)n−1] through probabilitites calculated from the

markov chain with transition probability
√
ξ/(1 +

√
ξ) from state 0 to state 1 and

transition probability 1/(1 +
√
ξ) from state 1 to state 1.

Proof. The different cases are all based on the following rewriting of the moment
generating function

ψ(γz) =
n∑

k=0

(γz)kp(Sn = k) = (p0, γzp1)P0(γz)n−1(1, 1)T

= λ(γ)n−1(p0, γzv(γ)p1)P0(γ; z)n−1(1, 1/v(γ))T,

where λ(γ) is the maximal eigenvalue of P0(γ), (1, v(γ))T is a right eigenvector,
v(γ) = [λ(γ)− (1− α)]/(αγ), and

P0(γ; z) =

(
(1− α)/λ(γ) zαγv(γ)/λ(γ)

(1− β)/(λ(γ)v(γ)) zβγ/λ(γ)

)
.
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When (1− α)β/(1− β)→ 0 and γ = (1− β)/β2 we find

λ(γ) ∼ 1− β
βε

, v(λ) ∼ β

ε
, P0(γ; z)→

(
0 z

1− ε εz

)
,

where ε = 2/(1 +
√

5). When instead γ = (1− α)2/(1− β) we find

λ(γ) ∼ 1− α
ε

, v(λ) ∼ (1− β)ε

(1− α)
, P0(γ; z)→

(
ε (1− ε)z
1 0

)
.

Finally, when (1− β)/(1− α)→ ξ and γ = 1− α we obtain

λ(γ) ∼ (1− α)(1 +
√
ξ), v(λ)→

√
ξ, P0(γ; z)→




1
1+
√
ξ

z
√
ξ

1+
√
ξ

√
ξ

1+
√
ξ

z
1+
√
ξ


 .

Thus to obtain the results of the proposition we need to find powers of specialized
matrices. By tedious calculations we obtain

(
0 z

1− ε εz

)n−1
=

εn

1− ε
n−1∑

k=n∗

zk
{( k − 1

n− k − 1

)(
0 1
0 ε

)

+

(
k − 1

n− k − 2

)(
ε 0
ε2 ε

)
+

(
k − 1

n− k − 3

)(
0 0
ε2 0

)}
,

and
(

1− ε εz
1 0

)n−1
= (1− ε)n−2

n∗∑

k=0

zk
{(n− k − 2

k

)(
1− ε 0

1 0

)

+

(
n− k − 2

k − 1

)(
1− ε (1− ε)2

0 1− ε

)
+

(
n− k − 2

k − 2

)(
0 (1− ε)2
0 0

)}
,

where n∗ is the smallest integer greater than or equal to (n − 1)/2, and n∗ is the
largest integer smaller than or equal to (n− 1)/2.

To show log concavity of a function h(k) we must show that h(k)h(k + 2) ≤
h(k + 1)2. This is easy to show for the nonvanishing part of (8). For the nonvan-
ishing part of (7) we must show that a fourth degree polynomial in 0 < β < 1 is
nonnegative, and a tedious calculation shows that the coefficients of the polynomial
are indeed nonnegative.

Since the two cases in (7) and (8) have different scalings the exponentially tilted
distribution with mean (n− 1)/2 for n odd or n/2 or (n− 2)/2 for n even become
concentrated at one point for α → 1. Combined with the log concavity of the
nonvanishing parts of (7) and (8), we see that we need to consider the relative error
of the approximation at integers closest to (n − 1)/2. We should therefore look at
cases where we change from the approximation (4) to the approximation (5). This
is when the variance of the exponentially tilted distribution is 0.4. Thus, we have
not gone all the way to the limit α = 1, and these cases have to be investigated by
numerical calculations. It is found that the relative error increases with the value
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of β, and is less than 0.10 for (5) and less than 0.09 for (4) when the variance is 0.4.
To understand these numbers it may be of interest to compare with a distribution
with probabilities proportional to exp(−τk2 − s|k|), k ∈ N, and where we want
to approximate the probability at k = 0. For τ ≈ 0.73 and s chosen so that the
variance is 0.4 the relative errors of the approximations (4) and (5) are comparable
to the numbers quoted above. The extreme case of a discrete Laplace distribution
(τ = 0) gives relative errors 0.43 and 0.24 for the approximations (4) and (5), see in
this connection Figure 1.

In summary, the saddlepoint approximation of this paper has relative error of
order o(1/n) in a large deviation region for fixed values of (α, β), and has bounded
relative error all over the parameter space with a maximum of 0.18 for the limiting
case of a uniform distribution.

3 A comparison with Xia and Zhang (2009)

In this section we compare the saddlepoint approximation of this paper with the
approximation of Xia and Zhang (2009). For the comparison we calculate exact
probabilities using the recursion in (1). As mentioned in the introduction the im-
portant aspect of the latter paper is that an explit upper bound for the total varti-
ation distance of the approximation is given. Unfortunately, as we will demonstrate
below, for very many cases the upper bound is actually above one and therefore
gives no information on the quality of the approximation.

In Figure 2 it is shown for what parameter values the upper bound is less than
one. The white region is where the bound is below one. The left subfigure is for
n = 1000 and the right subfigure is for n = 100000. Xia and Zhang (2009) say that
the upper bound is “useful when both α and β are a reasonable distance from 0
and 1.” However, as can be seen from Figure 2 even when n = 100000 quite a large
part of the parameter space is excluded.

We next consider situations where α = αn and β = βn depend on n and let
n → ∞. We consider situations where Sn, properly normalized, has a limiting
distribution. In Table 1 we have considered three of the cases in Dobrushin (1961).
The table gives the upper bound of Xia and Zhang (2009) for the total variation
distance for n = 100, 10000, 1000000. In the two first rows Sn has a limiting normal
distribution with Var(Sn)/E(Sn) larger than one and less than one, respectively.
Because the limit is a normal distribution we expect the total variation distance to
tend to zero. This is, however, not reflected well in the upper bound. The third row
of Table 1 is for one of the remaining cases with a nonnormal limit, and the results
shown are typical for these cases, that is, the upper bound tends to infinity. The
fourth row has been included to show a flaw in the formulation of Theorem 1.1 of
Xia and Zhang (2009). That theorem contains a success probability θ of a binomial
distribution that becomes greater than one for certain values of (α, β, n).

As a final investigation of the upper bound of Xia and Zhang (2009) we compare
the actual total variation distance with the upper bound as n → ∞. We take
α = 0.4 and β = 0.5, staying well away from zero and one. The results can be seen
in Table 2. Even for n = 10000, where the total variation distance is very small, the
upper bound is still above one.
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Figure 2: The figure shows the upper bound on the total variation distance from Xia
and Zhang (2009) truncated at one. Thus the white region is where the upper bound is
below one and the black region is where the bound is above one. The left figure is for
n = 1000 and the right figure is for n = 100000.

Upper bound

Case α β n = 100 n = 10000 n = 1000000

I 4/
√
n 1/2 43 55 10

I 1/2 1− 4/
√
n 73 3 · 103 6 · 104

III 1/2 1− 40/n 73 3 · 106 3 · 1010

VI 1− 1/n 2/n < 0 < 0 < 0

Table 1: Upper bound on the total variation distance from Xia and Zhang (2009). Three
cases from Dobrushin (1961) with a limiting distribution of Sn are considered.

Having considered the upper bound of Xia and Zhang (2009) we next turn to a
direct comparison of the quality of the approximation of that paper and the saddle-
point approximation. Since we use the exact values of P (Sn = k) for k = 0, 1, n−1, n,
see (9), we exclude these points when calculating the performance of the approxi-
mation of Xia and Zhang (2009). We consider both the total variation distance and
the maximal relative error of the approximation for the point probabilities. The
relative error of an approximation a to a number x is in our comparisons computed
as max{a, x}/min{a, x}− 1. Table 3 shows the typical behaviour using n = 10 and
n = 300. The saddlepoint approximation of course has better properties in terms of
relative error, but also, generally, performs better on the total deviation scale. Even
for the case α = 0.5 and β = 0.6, which is close to the binomial case α = β, the
saddlepoint approximation performs best.
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n = 10 n = 1000 n = 10000

Total 0.015 0.001 0.0005
upper bound 360 6.4 1.3

Table 2: Total variation distance (Total) and upper bound for the approximation in Xia
and Zhang (2009). The parameter values are α = 0.4 and β = 0.5.

α β n TXZ TSp RXZ RSp

0.01 0.10 10 0.0003 0.0001 9 · 100 0.0508
0.01 0.10 300 0.0010 0.0017 5 · 1081 0.0072

0.01 0.50 10 0.0036 0.0015 6 · 10−1 0.1294
0.01 0.50 300 0.0192 0.0020 6 · 1037 0.0075

0.01 0.99 10 0.2461 0.0031 1 · 101 0.1764
0.01 0.99 300 0.1368 0.0104 2 · 102 0.0441

0.50 0.60 10 0.0222 0.0023 2 · 10−1 0.0108
0.50 0.60 300 0.0033 0.0000 2 · 1017 0.0089

0.50 0.99 10 0.0170 0.0015 2 · 108 0.1294
0.50 0.99 300 0.0770 0.0020 > 1 · 10100 0.0075

0.90 0.99 10 0.0034 0.0001 5 · 105 0.0508
0.90 0.99 300 0.0313 0.0017 > 1 · 10100 0.0072

Table 3: The total variation distance for the approximation of Xia and Zhang (2009)
(TXZ) and for the saddlepoint approximation of this paper (TSp), together with the
maximal relative error of the approximation to the point probabilities P (Sn = k),
k = 2, . . . , n − 2, (RXZ : approximation of Xia and Zhang (2009); RSp: saddlepoint ap-
proximation).

A Technical details of the approximation

In this appendix we give details of the saddlepoint approximation. We let p0 =
P (X1 = 0) and p1 = P (X1 = 1) and use the following exact values

P (Sn = 0) = p0(1− α)n−1, P (Sn = n) = p1β
n−1,

P (Sn = 1) = (1− α)n−3
[
p0α(1− α + (n− 2)(1− β)) + p1(1− α)(1− β)

]
,

P (Sn = n− 1) = βn−3
[
p1(1− β)(β + (n− 2)α) + p0βα

]
.

(9)

The saddlepoint approximation is then used for P (Sn = k)/P (0 < Sn < n) for
k = 2, . . . , n− 2.

The moment generating function ψ(z) from (3) can be evaluated through an
eigenvalue decomposition of P0(z), and from this the first four derivatives can be
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found as well. Alternatively, we define

ψ(z, a, n; j) =
n∑

k=j

k(j)z
k−jP (Sn = k,Xn = a), a = 0, 1, j = 0, 1, 2, 3, 4,

where k(j) = k(k− 1) · · · (k− j + 1) with k(0) = 1. Then the recursion (1) gives that
the vector of these terms (with the index a running faster than j) is calculated as

(p0, zp1, 0, p1, 0, 0, 0, 0, 0, 0)M5(z)n−1,

where M5(z) is the 10× 10 matrix

M5(z) =




P0(z) B 0 0 0
0 P0(z) 2B 0 0
0 0 P0(z) 3B 0
0 0 0 P0(z) 4B
0 0 0 0 P0(z)



, B =

(
0 α
0 β

)
.

Let κ(s) = log(φ(es)) be the cumulant transform of the conditional distribution
with φ(z) defined in (2). For a given value of k let s(k) be the saddlepoint, that is,
κ′(s(k)) = k, and let σ(k)2 = κ′′(s(k)) be the variance of the exponentially tilted
distribution. The cumulants are κ3(k) = κ(3)(s(k)) and κ4(k) = κ(4)(s(k)), and the
standardized cumulants are γ3(k) = κ3(k)/σ(k)3 and γ4(k) = κ4(k)/σ(k)4. We thus
have all the quantities entering the approximation in (4) and (5).

For the numerical calculations of this paper we have found M5(z)n by calculating
M2

5 , M4
5 , . . ., M2m

5 , where m is the largest integer with 2m ≤ n.
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