
16

THIELE CENTRE
for applied mathematics in natural science

THIELE CENTRE
for applied mathematics in natural science

Zooming in on a Lévy process at its supremum

Jevgenijs Ivanovs
www.thiele.au.dk

The T.N. Thiele Centre
Department of Mathematical Sciences
University of Aarhus

Ny Munkegade 118, Bldg. 1530
8000 Aarhus C
Denmark

Phone +45 89 42 35 15
Fax +45 86 13 17 69
Email thiele@imf.au.dk Research Report No. 05 November 2016





Zooming in on a Lévy process at its supremum

Jevgenijs Ivanovs

Department of Mathematics, Aarhus University, Denmark

Abstract

LetM and τ be the supremum and its time of a Lévy process X on some finite
time interval. It is shown that zooming in on X at its supremum, that is, con-
sidering (aη(Xτ+t/η−M))t∈R as η, aη →∞, results in (ξt)t∈R constructed from
two independent processes corresponding to some self-similar Lévy process S
conditioned to stay positive and negative. This holds when X is in the domain
of attraction of S under the zooming-in procedure as opposed to the classical
zooming-out of Lamperti (1962). As an application of this result we provide a
limit theorem for the discretization errors in simulation of supremum and its
time, which extends the result of Asmussen, Glynn, and Pitman (1995) for the
Brownian motion. Moreover, a general invariance principle for Lévy processes
conditioned to stay negative is given.

Keywords: Discretization error, Euler scheme, high frequency statistics, self-
similarity, conditioned to stay positive, invariance principle, functional limit
theorem

1 Introduction

The law of the supremum of a Lévy process X over a fixed time interval [0, T ] plays a
key role in various areas of applied probability such as risk theory, queueing, finance
and environmental since, to name a few. In particular, it is closely related to first
passage (ruin) times, as well as to the distribution of the reflected (queue workload)
process. Furthermore, this law is essential in pricing path-dependent options such
as lookback and barrier options (Broadie et al., 1997). There are only few examples,
however, where the law of the supremum is available in explicit form. More examples
are known when T is an independent exponential random variable, see, e.g., (Lewis
and Mordecki, 2008) and (Kuznetsov, 2010), but this essentially corresponds to
taking transform over time horizon T .

An obvious way to obtain the law of the supremum is to perform Monte Carlo
simulation using a random walk approximation of the Lévy process. In other words,
the Lévy process is simulated on a grid with a fixed time increment 1/η for some
large η which, of course, assumes that X1/η can be simulated efficiently. Even though
alternative simulation methods exist (Ferreiro-Castilla et al., 2014), we focus on this
obvious discretization scheme and aim at characterizing the limiting behaviour of
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the discretization or monitoring error. Further motivation comes from the fact that
discrete-time models may be more natural in practice, whereas related continuous-
time models may admit an explicit solution, see (Broadie et al., 1999) considering
such approximations of discrete-time option payoffs. Finally, this setup is consistent
with an influential field of high frequency statistics where it is normally assumed
that an Itô semimartingale is observed at equidistant times tending to zero (Jacod
and Protter, 2012).

Define the supremum and its discretized counterpart

M = sup{Xt : t ∈ [0, T ]}, Mη = max{Xi/η : i = 0, . . . , bηT c}

and let εη = M − Mη ≥ 0 be the discretization error. The (last) times of the
supremum and the maximum are denoted by τ and τη, respectively. In the case
when X is a Brownian motion with variance σ and drift µ, Asmussen et al. (1995)
showed the following weak convergence:

√
ηεη ⇒ σV, (1.1)

where V is defined using two independent copies of a 3-dimensional Bessel processes
and an independent uniform time shift. It is intuitive that (1.1) continues to hold if
X is replaced by an independent sum of a Brownian motion and a compound Pois-
son process, which is indeed true as shown by Dia and Lamberton (2011). Despite
numerous follow-up works and importance of (1.1) in various applications, the lim-
iting behaviour of εη is not known for a general Lévy process X. In fact, most of the
related works are concerned with asymptotic expansions of the expected error Eεη,
see (Janssen and Van Leeuwaarden, 2009), (Dia, 2010), (Chen, 2011) and (Dia and
Lamberton, 2011).

In this paper we establish a functional limit theorem for aη(Xτ+t/η−M), t ∈ R as
η, aη →∞, which corresponds to zooming in on the Lévy processX at its supremum,
see Theorem 6. The limit process ξ for positive times has the law of a certain self-
similar Lévy process S conditioned to be negative, whereas for negative times it is
the negative of S conditioned to be positive. It is required for this limit theorem
that X is in the domain of attraction of S (with a scaling sequence aη) under the
zooming-in procedure as opposed to the classical zooming-out of Lamperti (1962).
It is noted that zooming-in and zooming-out domains are very different, and the
former is determined by the behaviour of X at 0. In Corollary 7 we provide a general
version of (1.1) which additionally includes the scaled difference of suprema times
η(τ−τη). In particular, we show that (1.1) holds whenever the Brownian component
is present, i.e. σ > 0 in the Lévy-Khintchine formula (2.1).

Let us briefly discuss some related literature. In the study of extremes of Gaus-
sian processes (Piterbarg, 1996) it is standard to assume that the process of interest
locally behaves as a fractional Brownian motion or, more generally, as a self-similar
centered Gaussian process. In the context of Lévy processes, Barczy and Bertoin
(2011) obtained a somewhat related functional limit theorem by starting the process
(with a negative drift) at x → −∞, conditioning on having a positive supremum,
and shifting at the instant of the supremum. Concerning the classical zooming-out
procedure, Caravenna and Chaumont (2008) considered a rescaled random walk
converging to a self-similar Lévy process and provided an invariance principle for
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conditioning to stay positive. Finally, let us also mention that our problem does
not fit into the standard framework of high frequency statistics (Jacod and Prot-
ter, 2012), because the discretization error εη can not be easily retrieved from the
difference of X and its discretized version.

This paper is organized as follows. Section 2 is devoted to preliminaries on Lévy
processes, self-similar processes, processes conditioned to stay negative, as well as
post-supremum processes. A general invariance principle for Lévy processes condi-
tioned to stay negative is proven in Section 3. In Section 4 we present the result
of Lamperti (1962) but for zooming in instead of zooming out, and then specialize
to the case of Lévy processes. The main results of this paper are given in Section 5,
and the domains of attraction of self-similar Lévy processes under zooming-in are
studied in Section 6. We conclude by giving some remarks in Section 7.

2 Preliminaries

2.1 Canonical notation

Let Ω be a set of two-sided cádlág paths ω : R 7→ R ∪ {†}, where † is an isolated
additional point added to R. For a usual path defined on [0,∞) we put ωt = 0 for
all t < 0 which will be convenient in the following. Additionally, we may want to
terminate the path ω at some non-negative time T , and then we put ωt = † for all
t ≥ T .

We endow Ω with the extended Skorokhod J1 topology (Whitt, 1980), so that
a sequence of two-sided paths converges to some ω ∈ Ω if the restrictions to [a, b]
converge for all a < b such that a, b are the continuity points of ω. We let X be the
canonical process: Xt(ω) = ωt, and let P be a probability measure on Ω under which
(Xt)t≥0 is a Lévy process. Additionally, we write Px for the law of this process issued
from x.

2.2 Lévy processes

Consider a Lévy process (Xt)t≥0 and let ψ(θ) be its Lévy exponent: EeθXt = eψ(θ)t,
t ≥ 0 for at least purely imaginary θ. The Lévy-Khintchine formula states that

ψ(θ) = aθ + 1
2
σ2θ2 +

∫

R

(
eθx − 1− θx1{|x|<1}

)
ν(dx), (2.1)

where a ∈ R, σ ≥ 0 and ν(dx) is a measure on R\{0} satisfying
∫
R(x2∧1)ν(dx) <∞.

When
∫ 1

−1 |x|ν(dx) <∞ then this formula can be rewritten as

ψ(θ) = dθ + 1
2
σ2θ2 +

∫

R

(
eθx − 1

)
ν(dx), (2.2)

which corresponds to an independent sum of a drifted Brownian motion with mean
d and variance σ2, and a pure jump process of bounded variation on compacts.

In order to avoid uninteresting complications, throughout this work we exclude
compound Poisson processes, i.e., the case of d = 0, σ = 0, ν(R) < ∞. Concerning
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the behaviour of X for large t, we recall that only the following three possibilities
can occur as t → ∞: (i) Xt → ∞, (ii) lim inftXt = −∞ and lim suptXt = ∞, (iii)
Xt → −∞ a.s., where in case (ii) we say that X oscillates.

Often it is convenient to consider a Lévy process X killed (sent to †) at an
independent exponential time eq of rate q > 0. This is the only way of killing which
preserves stationarity and independence of increments (up to the killing time when
using the convention † − x = †), and so it leads to a natural generalization of a
Lévy process. We often keep q ≥ 0 implicit, but write Pq, ψq when it is necessary to
stress that the corresponding Lévy process is killed at rate q. The Lévy-Khintchine
formula (2.1) is extended to killed Lévy processes by putting ψq(θ) = ψ(θ) − q so
that Eq(eθXt ;Xt 6= †) = eψ

q(θ)t.
Finally, we define the overall supremum and its time:

X = sup
t≥0
{Xt : Xt 6= †}, G = sup{t ≥ 0 : Xt = X or Xt− = X}

with the convention that G = ∞ when X = ∞. The latter occurs when X drifts
to ∞ or oscillates,in which case X must be non-killed. Additionally, we let X =
inft≥0{Xt : Xt 6= †} to denote the overall infimum.

2.3 Self-similar processes

A process (Xt)t≥0 with X0 = 0 is called self-similar if there exists α > 0 such that
for all u > 0

(u−1/αXut)t≥0
d
= (Xt)t≥0. (2.3)

It will be always assumed that X is non-trivial in which case the index α is unique.
If X is a self-similar Lévy process then necessarily α ∈ (0, 2] and q = 0 (no-killing).
Moreover, α = 2 corresponds to the Brownian motion with drift 0 and variance σ2,
and α ∈ (0, 2) corresponds to a strictly α-stable Lévy process with σ = 0 and the
following Lévy measure:

ν(dx) = 1{x>0}c+x
−1−αdx+ 1{x<0}c−|x|−1−αdx (2.4)

for some c+, c− ≥ 0. Moreover, the following must hold true:

a = (c+ − c−)/(1− α), if α 6= 1, (2.5)
c+ = c−, if α = 1.

Additionally, the linear drift process Xt = dt for d 6= 0 is self-similar with α = 1.
The above are all the possible examples of non-trivial self-similar Lévy processes.

Suppose X is a self-similar Lévy process which is not a linear drift process. Then
X has paths of bounded variation on compacts if and only if α ∈ (0, 1), in which
case we may use the representation (2.2) with d = 0 and σ = 0. In particular, if X
is monotone then necessarily α < 1, and so it is a pure jump process with all the
jumps of the same sign. Finally, if X is not monotone then the point 0 is regular for
(0,∞) and (−∞, 0), see (Kyprianou, 2006, Thm. 6.5). In this case, by self-similarity,
the process X must be oscillating and so X =∞ and X = −∞.
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2.4 Processes conditioned to stay negative

For any x < 0 we may define the law of a Lévy processX started in x and conditioned
to stay negative:

P↓x( · ) = Px( · |X < 0)

unless P(X = ∞) = 1, because then we would condition on the event of zero
probability. In general, we first consider a killed process and then take the limit (the
corresponding events must be in FT for some T ):

P↓x( · ) = lim
q↓0

Pqx( · |X < 0), (2.6)

which defines a probability law (Chaumont and Doney, 2005). It is well known that
the process under P↓x is a Markov process on (−∞, 0) with a Feller semigroup, say
p↓t (x, dy). This process has infinite life time if and only if the original Lévy process
X satisfies X = −∞, i.e. X either drifts to −∞ or oscillates. Finally, it is standard
to express the semigroup p↓t (x, dy) as Doob’s h-transform of X killed at the entrance
time into [0,∞), see (3.1) for a precise expression.

It is crucial to take the limit in (2.6) along independent exponential times, that
is, the limit of conditioned killed Lévy processes, because deterministic times may
result in a different limit law. In particular, when X →∞ the life time of the process
under P↓x is finite, whereas deterministic times necessarily lead to an infinite lifetime
if the corresponding limit law exists, see also (Hirano, 2001). When X oscillates,
we may alternatively condition on X exiting (−y, 0) through −y and then letting
y →∞, see (Chaumont and Doney, 2005, Rem. 1). Finally, according to (Chaumont,
1996, Rem. 1), for a non-monotone self-similar Lévy process we may also take the
limit along deterministic times:

P↓x( · ) = lim
t→∞

Px( · |Xs < 0 ∀s ≤ t).

2.5 Post-supremum processes

Unless X =∞ we consider the post-supremum process (XG+t −X)t≥0, and denote
its law by P↓ (there is no subscript as compared to the conditional law P↓x). In
general, we consider X on a finite time interval [0, T ] and the corresponding post-
supremum process. Then we take T →∞ to define the law P↓, see (Bertoin, 1993),
where it is also shown that the process under P↓ is Markov with transition semigroup
p↓t (x, dy) for any x, y < 0 and t ≥ 0. This explains the notation for the law of the
post-supremum process. If X is such that 0 is regular for (−∞, 0) then the process
under P↓ starts at 0 and leaves it immediately, but otherwise it starts at a negative
value having a certain distribution, see (Chaumont and Doney, 2005). In the latter
case the post-supremum process may also be identically † with positive probability.

It should be noted that some of the cited results are stated for non-killed pro-
cesses, but their extension to killed Lévy processes is straightforward. Furthermore,
in the analogous way we define the laws P↑x, x > 0 and P↑ corresponding to the Lévy
process conditioned to stay positive and the post-infimum process, respectively. One
may easily obtain these laws by considering −X process. Here we recall that we
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excluded compound Poisson processes, but otherwise we would need to make a dis-
tinction between conditioning to stay non-negative and positive, as well as first and
last times of the infimum.

Remark 1. In this paper we will focus on a self-similar Lévy process S with law Q
arising as a weak limit when zooming in on X. Recall that such S oscillates when
non-monotone and hence both Q↑ and Q↓ are defined as the limit laws of finite time
post-infimum and post-supremum processes, respectively.

3 Invariance principle for Lévy processes
conditioned to stay negative

Recall from Section 2.1 that we work with two-sided paths such that ωt = 0 for all
t < 0. This trick allows us to provide a clean formulation of the following functional
limit theorem which is central for this study.

Theorem 2. Let X(η) be a sequence of (possibly killed) Lévy processes weakly con-
verging to a Lévy process X (which is not a compound Poisson process). Then
P(η)↓

x ⇒ P↓x for all x < 0 and, moreover, P(η)↓ ⇒ P↓.

If the process X has a finite supremum then the above statement follows im-
mediately from the continuous mapping theorem and the fact that X has a unique
time of the supremum. The main difficulty lies in the other case, where the law P↓
is defined as a limit. A similar invariance statement was proven by Bryn-Jones and
Doney (2006) and Caravenna and Chaumont (2008), but with X(η) being a rescaled
random walk converging to a Brownian motion (Donsker’s theorem) and to an α-
stable Lévy process, respectively. Some other related works include (Bolthausen,
1976), (Iglehart, 1974), and (Doney, 1985) considering the invariance principle for
the meander in the setting of Donsker’s theorem and its extension.

The assumption of two-sided paths with ωt = 0 for all t < 0 allows us to avoid the
following problem. Suppose that X is such that 0 is irregular for (−∞, 0), but X(η)

are such that 0 is regular for (−∞, 0). For example, we may add to X a Brownian
motion with zero drift and diminishing variance. For simplicity, assume that all the
processes are killed so that the times of suprema are finite. Then X leads to the
post-supremum process starting (at time 0) at a negative level, whereas for X(η)

such processes start at 0 and then quickly jump to a negative level when η is large.
The assumption that these processes are fixed at 0 for negative times ensures the
claimed convergence in the Skorokhod’s J1 topology. A similar problem but with a
different solution appears in (Chaumont and Doney, 2005, Thm. 2).

Proof of Theorem 2. The proof consists of three steps, where in steps (ii) and (iii)
we use particular representations of the laws P↓x and P↓ avoiding double limits. In the
following we define some quantities for the process X and assume that the analogous
quantities are defined for each X(η) without explicitly writing them.

(i) Consider the ascending ladder processes (L−1, H), where L−1 denotes the
inverse local time at the supremum and Ht = XL−1

t
. The corresponding Laplace
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exponent is denoted by k(α, β) and normalized so that k(1, 0) = 1, see (Bertoin,
1996, Ch. VI) or (Kyprianou, 2006, Ch. 6). By the continuous mapping theorem we
get convergence of the Wiener-Hopf factors, which then implies convergence of the
bivariate exponents and hence also weak convergence of the ladder processes:

k(η)(α, β)→ k(α, β), (L(η)−1, H(η))⇒ (L−1, H).

It is noted that in the above textbooks the results are formulated for non-killed
Lévy processes, but they extend to killed Lévy processes in a straightforward way.
In particular, such Wiener-Hopf factors concern killed Lévy processes observed up
to another independent exponential time. Alternatively, we may use the obvious
relation kq(α, β) = k(α + q, β)/k(1 + q, 0).

(ii) The following representation of the semigroup of the conditioned process is
standard (Chaumont and Doney, 2005):

p↓t (x, dy) =
h(y)

h(x)
Px(Xt ∈ dy,X t < 0), x < 0, (3.1)

where X t = sups≤tXs and

h(x) = E
∫

[0,∞)

1{Xt<−x}dLt = E
∫ ∞

0

1{Ht<−x}dt =: U(−x)

is a finite, continuous, increasing function. Note that Px(X t = 0) = 0 for x < 0,
because we assumed that X is not a compound Poisson process, and so

P(η)
x (Xt ∈ dy,X t < 0) ⇒ Px(Xt ∈ dy,X t < 0).

Furthermore, observe that U(y) is the distribution function of U(dy) =
∫∞
0

P(Ht ∈
dy)dt which is the potential measure of the ladder height process. It is well-known
and easy to see that

∫
[0,∞)

e−βyU(dy) = 1/k(0, β) for β > 0. Thus according to step
(i) the Laplace transform of U (η)(dy) converges to that of U(dy) for all β > 0, and
so the corresponding distribution functions converge:

h(η)(x) = U (η)(−x) → U(−x) = h(x),

because the latter is continuous. The above convergence result for infinite measures
can be found in e.g. (Mimica, 2015, Thm. 2.1).

We have established convergence of the semigroup given in (3.1), and so according
to (Ethier and Kurtz, 1986, Thm. 4.2.5) we obtain

P(η)↓
x ⇒ P↓x, for x < 0

because the corresponding processes are Feller and the initial distributions coincide.
(iii) Finally, we recall (Chaumont and Doney, 2005, Thm. 1) that P↓ is also the

law of the post-supremum process under P↓x for any x < 0. Under the latter law
the time of the supremum is finite and unique, and so we can apply the continuous
mapping theorem to establish that

P(η)↓ ⇒ P↓.

This completes the proof.

7



Let us remark that the assumption of Theorem 2 that X is not a compound
Poisson process is essential, and a counter example can be easily provided by con-
sidering Xt − t/η so that the limit of P(η)↓ is the law of X conditioned to stay
non-positive rather than negative. Nevertheless, it is no problem if some or all of
X(η) are compound Poisson processes.

Finally, one may conjecture that P(η)↓
xη ⇒ P↓x, where x, xη ≤ 0 are such that xη →

x and by convention P↓0 = P↓. This result would include Theorem 2 and (Chaumont
and Doney, 2005, Thm. 2) as special cases. This generalization is rather obvious
when x < 0, but requires some effort when xη → 0. In the latter case we need to
show that the pre-supremum process under P(η)↓

xη collapses into a point in the limit,
see also (Chaumont and Doney, 2005, Eq. (3.1)). This extension is not needed in
this work and thus is omitted.

4 The result of Lamperti for zooming in

Consider an arbitrary stochastic process X. The famous result of Lamperti (1962)
states that the class of all possible non-degenerate limits of ((Xηt+bη)/aη)t≥0, where
η → ∞ and 0 < aη → ∞, is given by self-similar processes, see Section 2.3. The
above rescaling may be seen as zooming out on the process X. In this work, however,
we are interested in the opposite scaling of time and space, that is, in zooming in
on the process X:

lim
η→∞

(
aηXt/η

)
t≥0 = (St)t≥0, where 0 < aη →∞, (4.1)

and the convergence is in the sense of finite dimensional distributions, see also Re-
mark 4. By a slight adaptation of the arguments in (Lamperti, 1962, Thm. 2) we
get the following result.

Theorem 3. Assume that (4.1) holds for continuous in probability non-trivial pro-
cess S. Then S is self-similar with some index α > 0 as defined in (2.3) and

aη = η1/α`η, X0 = 0 a.s.,

where `η is a function slowly varying at ∞.

Remark 4. Instead of (4.1) we may consider a seemingly more general sequence
aη(Xt/η + bη) of processes. Then it is not hard to see that there is a constant c such
that bη → c, aη(bη − c) → 0 and P(X0 = −c) = 1 showing that we may simply take
Xt+c and apply Theorem 3. Furthermore, there are two differences from the original
result of Lamperti (1962). Firstly, we necessarily have S0 = 0, and, secondly, the
distribution of X0 must be concentrated at a point.

It is worth mentioning that the sequence aη and the limit process S are essentially
unique up to a scaling factor (convergence to types result). More precisely, if the
limit processes S and S ′ are non-trivial then S ′ and aS are versions of each other
for some constant a > 0 where a′η/aη → a.
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Let us specialize (4.1) to the case when X is a Lévy process with the Lévy
exponent ψ. It is clear that stationarity and independence of increments must be
preserved by the limit process, and so S must be a Lévy process with Lévy exponent
ψS, say. Now the convergence in (4.1) extends to the weak convergence on the
Skorokhod space, and it is equivalent to

ψ(η)(θ) = ψ(θaη)/η → ψS(θ), η →∞ (4.2)

for purely imaginary θ, where ψ(η) is the Lévy exponent of the Lévy process X(η)
t =

aηXt/η. According to Theorem 3, if S is non-trivial then it is α-self-similar Lévy
process and aη is regularly varying with index 1/α, see also Section 2.3. In Section 6
we provide a rich class of examples of Lévy processes X satisfying (4.2) and identify
the associated self-similar Lévy process S, as well as the scaling sequence aη.

We conclude this section by the following simple observation.

Lemma 5. There is a trichotomy with respect to (4.2):

(i) X is such that 0 is regular for (−∞, 0) and for (0,∞) then S is oscillating;

(ii) X is such that 0 is irregular for (0,∞) then S is decreasing;

(iii) X is such that 0 is irregular for (−∞, 0) then S is increasing.

Proof. The given three cases are exhaustive, because we assumed that X is not a
compound Poisson process. Use self-similarity of S to obtain the statements in each
of the cases.

5 Zooming in on the supremum

In the following we consider a Lévy process X satisfying (4.2) for some sequence
0 < aη →∞ and some non-trivial self-similar Lévy process S. In other words, X is
in the domain of attraction of S when zooming in, see Section 6 providing sufficient
conditions for this.

Letting Q be the law of S, we consider the process ξ on R such that

(ξt)t≥0 has the law Q↓, (−ξ(−t)−)t≥0 has the law Q↑ (5.1)

and both parts are independent, see Section 2.5. Note that on the right hand side
we reverse both time and space. In other words, when looking at ξ from the point
(0, 0) backwards in time and down in space we see the law Q↑. Furthermore, the
laws Q↓ and Q↑ inherit self-similarity from Q, and so they correspond to self-similar
Markov processes, where the former is negative and the latter is positive (when
started away from 0). Such processes are well-studied and, in particular, they enjoy
the Lamperti representation using the associated Lévy process, see (Caballero and
Chaumont, 2006, Cor. 2) specifying the latter.

Finally, according to the trichotomy of Lemma 5 we have the following cases:

(i) If S is oscillating then ξ has doubly infinite life time, i.e. ξt 6= † for all t ∈ R;
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(ii) If S is decreasing then

ξt = †1{t<0} + St1{t≥0}, t ∈ R;

(iii) If S is increasing then

ξt = −S(−t)−1{t<0} + †1{t≥0}, t ∈ R.

Note that in the latter two cases the non-trivial conditional lawQ↑ orQ↓ is essentially
given by the law Q of the self-similar Lévy process S.

Theorem 6. Let X be a Lévy process satisfying (4.2) for some sequence 0 < aη →∞
and a non-trivial process S, which then must be a self-similar Lévy process. Con-
sider X on [0, T ) for any T > 0, and let M and τ be the supremum and its time,
respectively. Then

(aη(Xτ+t/η −M))t∈R ⇒ (ξt)t∈R as η →∞, (5.2)

where ξ is defined in (5.1) with respect to the law Q of S characterized by ψS(θ).

Proof. Note that X can not be a compound Poisson process, because then the limit
S ≡ 0 is trivial. Restriction of X to [0, T ) is achieved by putting Xt = † for all
t /∈ [0, T ). Instead of a deterministic T we first consider the case T = eq of an
independent exponential time of rate q > 0. By doing so we obtain a killed Lévy
process, which satisfies (4.2) with the same aη and ψS, and hence the corresponding
killed Lévy process X(η) converges to S. Observe that

aη(Xτ+t/η −M)1{t≥0}

is the post-supremum process corresponding to X(η), and so its law converges to Q↓
according to Theorem 2. Moreover, it is well known that the pre-supremum process

−aη(X(τ−t/η)− −M)1{t≥0}

is independent of the post-supremum process and has the law of the post-infimum
process, which follows from time reversal and splitting (Greenwood and Pitman,
1980). Another application of Theorem 2, but for conditioning to stay positive,
shows that the limit law is given by Q↑, completing the proof for a random T = eq.

Consider a bounded continuous functional F on the Skorokhod space of two-
sided paths. Let F (η)

T and F (∞) denote F applied to the left hand side of (5.2) and
the right hand side, respectively. The first part of the proof shows that

q

∫ ∞

0

e−qTEF (η)
T dT → EF (∞) = q

∫ ∞

0

e−qTEF (∞)dT,

that is, the transforms in T converge. Hence EF (η)
T → EF (∞) for almost all T > 0.

If X is such that 0 is regular for (−∞, 0) then τ 6= T a.s. for any T > 0. In this
case the extension of the result to an arbitrary T is straightforward. In the other
case we use time reversal to translate our supremum problem into infimum problem,
and observe that the infimum can not be achieved at the end point T . Swapping the
direction of time completes the proof.
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With respect to Theorem 6 and trichotomy of Lemma 5 it will be useful to
observe that in case (ii) the convergence result of Theorem 6 holds on the event
{τ 6= 0}, because it trivially holds on the complementary event as well as on the
whole Ω. The analogous observation can be made about the case (iii) and the event
{τ 6= T}. The following result establishes the joint convergence of (Mη −M, τη − τ)
according to the above trichotomy.

Corollary 7. Let U be an independent uniform (0, 1) random variable. Under the
conditions of Theorem 6 the sequence of random pairs

(aη(Mη −M), η(τη − τ)), η →∞

weakly converges to

(i) (maxi∈Z ξU+i, U + argmaxi∈ZξU+i) if S is oscillating,

(ii) (SU , U) if S is decreasing,

(iii) −(SU , U) if S is increasing,

where in (ii) and (iii) the convergence holds on the event {τ 6= 0} and {τ 6= T},
respectively.

Proof. It is well known that the distribution of τ has a Lebesgue density on (0, T )
and an atom at 0 and at T according to (ii) and (iii) of the above trichotomy,
see (Chaumont, 2013, Thm. 6). The old result by Kosulajeff (1937) states that the
fractional part frac(τη) weakly converges to U if the distribution of τ is absolutely
continuous. Moreover, it is well known, see (Jacod and Protter, 2012, Thm. 4.3.1),
that we may take an independent U on the same probability space and such that
frac(τη)→ U a.s. (this construction is related to stable convergence in law).

Note that observing Xt at the time instants i/η, i ∈ Z corresponds to observing
Xτ+t/η at the time instants Z− frac(τη). From Theorem 6 and the above discussion
we have (

−frac(τη), (aη(Xτ+t/η −M))t∈R
)
⇒ (U, (ξt)t∈R) ,

where U and ξ are independent. It is easy to see that P(ξt = ξs) = 0 for any s 6= t
(i ξt 6= †), and lim|t|→∞ ξt ∈ {−∞, †}. Therefore, ξt observed at times i+U, i ∈ Z has
a unique maximum. Furthermore, ξ is continuous at each of the observation instants
a.s., and so the continuous mapping theorem completes the proof.

Let us comment on the cases (ii) of Corollary 7; the case (iii) being similar. This
case corresponds to X being such that 0 is irregular for (0,∞), and so the process
X achieves its maximum by a jump, unless τ = 0. Hence on the event {τ 6= 0} the
time τη of the discrete maximum must approach τ from the right, which is reflected
by the fact that η(τη − τ) converges to a positive U . Moreover, in the limit the first
observation succeeding time τ yields the maximal value.
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6 Domains of attraction

In this section we explore the convergence of Lévy exponents in (4.2). We assume
that X has the Lévy triplet a, σ, ν(dx) as specified in Section 2.2. Furthermore, in
the bounded variation case we use the linear drift d.

Proposition 8. The following two results hold.
(i) If σ > 0 then (4.2) holds with

aη =
√
η, and ψS(θ) = σ2θ2/2,

i.e. S is a Brownian motion with zero drift and variance σ2.
(ii) If X is a bounded variation process then (4.2) holds with

aη = η and ψS(θ) = dθ,

i.e. S is a linear drift process: St = dt, which is trivial if d = 0.

Proof. (i) It is well known (Bertoin, 1996, Prop. I.2) that ψ(θ)/θ2 → σ2/2 as |θ| →
∞. Hence ψ(θ

√
η)/η → σ2θ2/2 as η → ∞ establishing the result. The result in (ii)

follows similarly.

Proposition 9. Assume that σ = 0 and ν(dx) has a density f on some neighbour-
hood of 0. Suppose that

lim
x↓0

f(−x)

f(x)
= c ∈ [0,∞), f(x) = x−α−1`(x) for small x > 0,

where ` is a function slowly varying at 0, and α ∈ (0, 1)∪ (1, 2). Moreover, let d = 0
if α < 1. Then (4.2) holds for aη →∞ satisfying

aαη `(
1
aη

)

η
→ c+ ∈ (0,∞) (6.1)

with S being a strictly α-stable Lévy process with c− = cc+, see (2.4).

Proof. It is assumed throughout that θ ∈ iR is fixed.
(i) Consider the case of α < 1. Then for any fixed ε > 0 we have

ψ(θaη)/η =

∫

R

1

η
(eθaηx − 1)ν(dx) =

∫ ε

−ε

1

η
(eθaηx − 1)ν(dx) +O(1/η).

Next observe that
∫ ε

0

(eθaηx − 1)/ηf(x)dx =

∫ εaη

0

(eθx − 1)
f(x/aη)

ηaη
dx

=

∫ εaη

0

(eθx − 1)x−α−1
aαη `(1/aη)

η

`(x/aη)

`(1/aη)
dx→ c+

∫ ∞

0

(eθx − 1)x−1−αdx

given that the dominated convergence theorem applies which is shown in the fol-
lowing. Analysis of the contribution of negative jumps is now trivial. Use (2.4) to
conclude.

12



Concerning the dominated convergence theorem, we split the second last integral
in two according to x < 1 and x > 1, and use the bounds |eθx − 1| ≤ C1x and
|eθx − 1| ≤ C1 for some C1 > 0, respectively. According to Lemma 10 with δ = 1/aη
the first integrand is bounded by C2x

−α−v and the second by C2x
−α−1+v for large

enough aη and any v > 0. It is left to pick v such that v < 1 − α in the first case,
and v < α in the second.

(ii) Consider the case α ∈ (1, 2). It is well known (and can be easily derived from
the representation theorem) that `(δ)δ−v → ∞ for any v > 0 as δ → 0. Therefore,
we must have aη/η → 0 as η →∞, showing that a can be arbitrary and so we fix it
at 0. Similarly, to (i) for an arbitrary ε > 0 we consider

∫ ε

0

1

η
(eθaηx − 1− θaηx1{x<1})f(x)dx

=

∫ εaη

0

(eθx − 1− θx1{x<aη})x−α−1
aαη `(1/aη)

η

`(x/aη)

`(1/aη)
dx

→ c+

∫ ∞

0

(eθx − 1− θx1{x<1})x
−1−αdx− c+θ

∫ ∞

1

x−αdx,

where we used the dominated convergence theorem twice based on Lemma 10 with
v < 2− α and v < α − 1, respectively. The latter term evaluates to −θc+/(α − 1).
Finally, analysis of the contribution of negative jumps allows us to conclude in view
of (2.4) and (2.5).

Let us note that there always exists a sequence aη satisfying (6.1) for any c+,
and, moreover, it must be regularly varying at ∞ with index 1/α, see Theorem 3.
For the boundary case α = 1 the result is more complicated. Additionally, to the
assumptions of Proposition 9 we need to ensure that

aη
η

(
a−

∫ 1

1/aη

xν(dx) +

∫ −1/aη
−1

xν(dx)
)

has a finite limit as η →∞ and, in particular, c = 1.

7 Final remarks

Let us reconsider the setting of Theorem 6. According to Proposition 8 and Propo-
sition 9 we have three essentially different cases:

(a) X has a Brownian part: σ > 0. Then aη =
√
η and St = σWt, where Wt is a

standard Brownian motion. Therefore, the limiting process ξ is the same as in
the pure Brownian case analysed by Asmussen et al. (1995). It is symmetric
around 0, that is, Q↓(dω) = Q↑(−dω) and Q↑ is the law of (σBt)t≥0, where Bt

is the three-dimensional Bessel process. In particular, (1.1) holds.

(b) X is of bounded variation with d 6= 0. Then aη = η and St = dt leading to the
conditioned laws Q↓ and Q↑ of a very simple form, and, in particular,

ηεη ⇒ |d|U on the event τ /∈ {0, T},
where U is a uniform (0, 1) random variable.
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(c) X is in the domain of attraction (under zooming in) of a strictly α-stable
Lévy process (in particular, σ = 0 and d = 0 in bounded variation case), see
Proposition 9. Then aη = η1/α`η, where `η is a function slowly varying at ∞.
In this case S may still be monotone when α < 1, yielding simple expressions
for Q↓ and Q↑.

It is noted that the above cases are not exhaustive, even though they cover most of
the interesting examples in practice.

As mentioned in Section 1, there is quite some interest in the literature in de-
termining the rate of convergence of the expected error Eεη = E(M − Mη) to 0.
Our results provide a hint on this rate, but do not readily determine it. The reason
is that proving uniform integrability of aηεη seems to be a hard task in general.
In some cases the representation of Eεη based on Spitzer’s identity, see (Asmussen
et al., 1995, Eq. (3.3)), may be useful. Furthermore, we anticipate that uniform in-
tegrability does not hold when the attractor S is a strictly α-stable Lévy process
with α < 1, which is clearly true when S is monotone and E|SU | =∞.

Finally, it is possible to apply our results to study the behaviour of X around its
first passage and last exit times, instead of the time of supremum. The key result here
is the well known path decomposition of the Lévy process at these times (Duquesne,
2003). For example, on the event of continuous last exit from some interval (−∞, x),
the post-exit process is independent from the pre-exit process and the former has
the law P↑, whereas the latter when time-reversed has the original law (up to the
last exit). Hence using the tools of this paper, and in particular Theorem 2, we may
provide, e.g., a limit result for zooming in on X at its last exit time.

Appendix

The following lemma is a slight extension of Potter’s bounds for a slowly varying
function.

Lemma 10. Let ` be slowly varying at 0. Then for any u, v > 0 there exists ε > 0
such that

`(xδ)

`(δ)
< (1 + u)×

{
x−v, x ∈ (0, 1)

xv, x ∈ (1, ε/δ)

for all δ < ε.

Proof. This result is based on Karamata’s representation theorem (Resnick, 2007,
Cor. 2.1): there exists h > 0 such that for all x ≤ h

`(x) = exp

(
u(x) +

∫ h

x

v(t)

t
dt

)
,

where u, v are bounded functions, such that limx↓0 u(x) ∈ (−∞,∞) and limx↓0 v(x) = 0.
Choose ε ∈ (0, h) so small that eu(xδ)−u(δ) < 1 + u for all x < ε/δ, δ < ε, and

|v(t)| < v for all t < ε. Thus we have

`(xδ)

`(δ)
≤ (1 + u) exp

(
v

∫ δ

xδ

dt

t

)
, x < ε/δ.
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For x < 1 the integral evaluates to log δ − log(xδ) = − log x, and for x > 1 it
evaluates to log x.
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