Afsnit 3.7: Estimation og Test

Under model kan estimation foretages for hver af de multinomialmodeller under brug af resultatet i underafsnit 3.1.1. Dette giver
Under model skal det fælles sæt sandsynligheder estimeres. Opstiller man likelihoodfunktionen, kan man indse, at estimaterne opnås ved at bruge
hvor er den 'te søjlesum og Igen kan vi bruge resultatet i underafsnit 3.1.1 og får
Vi kan nu beregne de forventede under model Idet er det forventede antal i kasse for population er denne
Denne formel kan læses som "rækkesum gange søjlesum divideret med den totale sum".

3.7.1 Test

For at lave et test for reduktion fra model til model bruges igen likelihood ratio teststørrelsen på formen hvor er forholdet mellem maksimum af likelihoodfuktionen under de to modeller:
og dermed
I ord kan vi sige dette, som at er 2 gange sum over celler af det observerede antal ganget med logaritmen til det observerede antal divideret med det forventede antal. Med celler mener vi indgangene i matricen med antallene
Resultat 3.7.1. (Homogenitetstest)
Betragt modellerne og som beskrevet i dette afsnit. Hvis alle de forventede er større end eller lig med 5, kan vi approksimativt beregne værdien for test af reduktion fra model til model baseret på den observerede værdi af teststørrelsen ved
Antallet af frihedsgrader følger den generelle regel med antallet af frie parametre i minus antallet af frie parametre i :

Illustration gennem R

Nedenstående kode viser eksplicit beregningen af de forventede antal. I eksempel 3.7.2 nedenfor er vist en kortere version a koden, og det er denne I skal bruge i forbindelse med opgaverne. I kodevinduet er Obs en matriks med følgende data:
Kør koden, og forklar, hvad de forskellige dele af output indeholder.

Svar: Homogenitetstest

Funktionen rowSums beregner rækkesummer, og giver derfor en vektor af længde 3. Funktionen colSums beregner søjlesummer, og giver derfor en vektor af længde 2. Funktionen outer tager to vektorer som input og danner en matriks, hvor den 'te indgang er den 'te indgang i den første vektor ganget med den 'te indgang i den anden vektor, hvorfor ex bliver matricen med de forventede antal. Endelig indeholder og pval henholdsvis -teststørrelsen og den tilhørende -værdi. Koden i linjerne 5-8 kan skrives samlet som ex=outer(rowSums(obs),colSums(obs))/ sum(obs).

Eksempel 3.7.2. (Tillægge robotter menneskelignende egenskaber)
Vi fortsætter med data omkring antropomorfe indlæg på tre diskussionsfora fra Eksempel 3.6.1.
Først opstilles en statistisk model for data. Lad (iPad, Roomba, Aibo), (indeholder antropomorft indhold: ja, nej), være den stokastiske variabel, der angiver antal indlæg med indhold givet ved og med forum givet ved . Vi benytter modellen
Under denne model ønsker vi at teste hypotesen om samme frekvens af antropomorfe indlæg på de tre fora,
Først findes de forventede antal under hypotesen som rækkesum gange søjlesum divideret med det totale antal. Dette giver følgende tabel (afrundet til en decimal).
Dernæst beregnes -teststørelsen,
Da alle de forventede er større end fem (den mindste er 75.8), bruges -approksimationen til fordelingen af , og vi får
Denne -værdi er meget lille, hvorfor data strider mod hypotesen om samme frekvens af antropomorfe indlæg på de tre fora. Kigger vi på data, kan vi også se, at der er en høj frekvens af antropomorfe indlæg på Aibo-forummet, men en lav frekvens på iPad-forummet. Roomba-forummet ligger mellem de to andre fora, men nok tættere på iPad-forum end på Aibo-forum, hvilket ikke var forventet af forfatterne til artiklen. Beregningerne er lavet i R som vist nedenfor.

3.7.3 Beregning i R af homogenitetstest

ForegåendeNæste